Nucleoporin Nup154 is a Drosophila component of the nuclear pore complex (NPC), evolutionarily conserved from yeast to humans. While functional studies carried out in both yeast and metazoan cells indicated that Nup154 homologs are key elements of the NPC framework, the striking phenotypic specificity displayed by nup154 hypomorphic mutant alleles suggested that Nup154 might play additional roles in the context of the NPC. Actually, genetic analyses demonstrated that mutant nurse-cell nuclei do not undergo a normal chromosome dispersal process, uncovering an essential requirement for nup154 gene function during oogenesis. In this report, we show that Nup154 interacts genetically and physically with Cup, a germline-specific protein implicated in multiple aspects of female gametogenesis, including the regulation of the nurse-cell chromosome structure. The two proteins colocalize in vivo and are co-immunoprecipitated from ovarian extracts. Moreover, cup, nup154 double mutants exhibit much stronger oogenesis defects than single mutants. Our findings delineate an intriguing scenario where an ubiquitous nucleoporin might directly influence specialized developmental events.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1855102PMC
http://dx.doi.org/10.1534/genetics.106.062844DOI Listing

Publication Analysis

Top Keywords

nup154
8
nup154 genetically
4
genetically interacts
4
interacts cup
4
cup plays
4
plays cell-type-specific
4
cell-type-specific function
4
function drosophila
4
drosophila melanogaster
4
melanogaster egg-chamber
4

Similar Publications

A negative loop within the nuclear pore complex controls global chromatin organization.

Genes Dev

September 2015

The Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom.

The nuclear pore complex (NPC) tethers chromatin to create an environment for gene regulation, but little is known about how this activity is regulated to avoid excessive tethering of the genome. Here we propose a negative regulatory loop within the NPC controlling the chromatin attachment state, in which Nup155 and Nup93 recruit Nup62 to suppress chromatin tethering by Nup155. Depletion of Nup62 severely disrupts chromatin distribution in the nuclei of female germlines and somatic cells, which can be reversed by codepleting Nup155.

View Article and Find Full Text PDF

The nuclear envelope (NE), an important barrier between the nucleus and the cytoplasm, is composed of three structures: the outer nuclear membrane, which is continuous with the ER, the inner nuclear membrane (INM), which interfaces with chromatin, and nuclear pore complexes (NPCs), which are essential for the exchange of macromolecules between the two compartments. The NPC protein Nup155 has an evolutionarily conserved role in the metazoan NE formation; but the in vivo analysis of Nup155 has been severely hampered by the essential function of this protein in cell viability. Here, we take advantage of the hypomorphicity of RNAi systems and use a combination of protein binding and rescue assays to map the interaction sites of two neighbouring NPC proteins Nup93 and Nup53 on Nup155, and to define the requirements of these interactions in INM protein organization.

View Article and Find Full Text PDF

Nuclear Pore Complexes (NPCs) are involved in the regulation of nucleo-cytoplasmic trafficking. Drosophila Nup154 encodes a nucleoporin component of the NPC that is expressed in high proliferating tissues such as germ cells. Hypomorphic mutations in this gene cause male and female sterility and reduction of cell proliferation in the adult fly.

View Article and Find Full Text PDF

The Drosophila nucleoporin gene nup154 is required in both male and female germline for successful gametogenesis. Mutant flies lack differentiated sperm and lay abnormal eggs. We demonstrated that the egg phenotype was associated with specific alterations of the actin cytoskeleton at different stages of oogenesis.

View Article and Find Full Text PDF

Nucleoporin Nup154 is a Drosophila component of the nuclear pore complex (NPC), evolutionarily conserved from yeast to humans. While functional studies carried out in both yeast and metazoan cells indicated that Nup154 homologs are key elements of the NPC framework, the striking phenotypic specificity displayed by nup154 hypomorphic mutant alleles suggested that Nup154 might play additional roles in the context of the NPC. Actually, genetic analyses demonstrated that mutant nurse-cell nuclei do not undergo a normal chromosome dispersal process, uncovering an essential requirement for nup154 gene function during oogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!