The intestinal immune response to oral Ags involves a complex multistep process. The requirements for optimal intestinal T cell responses in this process are unclear. LFA-1 plays a critical role in peripheral T cell trafficking and activation, however, its role in intestinal immune responses has not been precisely defined. To dissect the role of LFA-1 in intestinal immune responses, we used a system that allows for segregation of T cell migration and activation through the adoptive transfer of LFA-1-deficient (CD18(-/-)) CD4(+) T cells from DO11.10 TCR transgenic mice into wild-type BALB/c mice. We find that wild-type mice adoptively transferred with CD18(-/-) DO11.10 CD4(+) T cells demonstrate decreases in the numbers of Ag-specific T cells in the intestinal lamina propria after oral Ag administration. We also find that in addition to its role in trafficking to intestinal secondary lymphoid organs, LFA-1 is required for optimal CD4(+) T cell proliferation in vivo upon oral Ag immunization. Furthermore, CD18(-/-) DO11.10 CD4(+) T cells primed in the intestinal secondary lymphoid organs demonstrate defects in up-regulation of the intestinal-specific trafficking molecules, alpha(4)beta(7) and CCR9. Interestingly, the defect in trafficking of CD18(-/-) DO11.10 CD4(+) T cells to the intestinal lamina propria persists even under conditions of equivalent activation and intestinal-tropic differentiation, implicating a role for CD18 in the trafficking of activated T cells into intestinal tissues independent of the earlier defects in the intestinal immune response. This argues for a complex role for CD18 in the early priming checkpoints and ultimately in the trafficking of T cells to the intestinal tissues during an intestinal immune response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.178.4.2104 | DOI Listing |
Inn Med (Heidelb)
January 2025
Lehrstuhl für Ernährung und Immunologie, School of Life Sciences, Technische Universität München, Gregor-Mendel-Straße 2, 85354, Freising, Deutschland.
Background: The intestinal microbiota comprises all living microorganisms in the gastrointestinal tract and is crucial for its function. Clinical observations and laboratory findings confirm a central role of the microbiota in chronic inflammatory bowel diseases (IBD). However, many mechanistic details remain unclear.
View Article and Find Full Text PDFGut
January 2025
Microbiome-Host Interactions, INSERM U1306, CNRS UMR6047, Institut Pasteur, Université Paris Cité, Paris, France
Background: Non-absorbed dietary emulsifiers, including carboxymethylcellulose (CMC), directly disturb intestinal microbiota, thereby promoting chronic intestinal inflammation in mice. A randomised controlled-feeding study (Functional Research on Emulsifiers in Humans, FRESH) found that CMC also detrimentally impacts intestinal microbiota in some, but not all, healthy individuals.
Objectives: This study aimed to establish an approach for predicting an individual's sensitivity to dietary emulsifiers via their baseline microbiota.
Microb Pathog
January 2025
College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, 271018, China. Electronic address:
Pigeon adenovirus type 1 predominantly infects pigeons under 12 months of age (mainly 3-5 months old), causing major clinical symptoms such as vomiting, dehydration, and discharge of thin yellow feces. In February 2023, an outbreak of a pathogen with symptoms similar to pigeon adenovirus infections occurred on a pigeon farm in Shandong Province, which was eventually identified as pigeon adenovirus type 1. In this study, a strain of PiAdV-1 was isolated from naturally infected pigeons and named pigeon-adenovirus-1-isolate-CH-SD-2023, and the hexon gene sequence as amplified and analyzed using polymerase chain reaction (PCR).
View Article and Find Full Text PDFPLoS Pathog
January 2025
Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.
The mosquito midgut functions as a key interface between pathogen and vector. However, studies of midgut physiology and virus infection dynamics are scarce, and in Culex tarsalis-an extremely efficient vector of West Nile virus (WNV)-nonexistent. We performed single-cell RNA sequencing on Cx.
View Article and Find Full Text PDFBackgrounds: Abuse of feed supplement can cause oxidative stress and inflammatory responses in Gallus gallus. Synbiotics are composed of prebiotics and probiotics and it possess huge application potentials in the treatment of animal diseases.
Methods: This study examined the effect of d-tagatose on the probiotic properties of L.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!