We extend our recently published windkessel-wave interpretation of vascular function to the wave intensity analysis (WIA) of left ventricular (LV) filling dynamics by separating the pressure changes due to the windkessel from those due to traveling waves. With the use of LV compliance, the change in pressure due solely to LV volume changes (windkessel pressure) can be isolated. Inasmuch as the pressure measured in the cardiovascular system is the sum of its windkessel and wave components (excess pressure), it can be substituted into WIA, yielding the isolated wave effects on LV filling. Our study of six open-chest dogs demonstrated that once the windkessel effects are removed from WIA, the energy of diastolic suction is 2.6 times greater than we previously calculated. Volume-related changes in pressure (i.e., the windkessel or reservoir effect) must be considered first when wave motion is analyzed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpheart.00936.2006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!