Speckle-tracking echocardiography (STE) uses a two-dimensional echocardiographic image to estimate two orthogonal strain components. The aim of this study was to assess sensitivity of circumferential (S(circ)) and radial (S(rad)) strains to infarct-induced left ventricular (LV) remodeling and scarring of the LV in a rat. To assess the relationship among S(circ), S(rad), and scar size, two-dimensional echocardiographic LV short-axis images (12 MHz transducer, Vivid 7 echo machine) were collected in 34 Lewis rats 4 to 10 wk after ligation of the left anterior descending artery. Percent segmental fibrosis was assessed from histological LV cross sections stained by Masson trichrome. Ten normal rats served as echocardiographic controls. S(circ) and S(rad) were assessed by STE. Histological data showed consistent scarring of anterior and lateral segments with variable extension to posterior and inferior segments. Both S(circ) and S(rad) significantly decreased after myocardial infarction (P<0.0001 for both). As anticipated, S(circ) and S(rad) were lowest in the infarcted segments. Multiple linear regression showed that segmental S(circ) were similarly dependent on segmental fibrosis and end-systolic diameter (P<0.0001 for both), whereas segmental S(rad) measurements were more dependent on end-systolic diameter (P<0.0001) than on percent fibrosis (P<0.002). STE correctly identifies segmental LV dysfunction induced by scarring that follows myocardial infarction in rats.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.01176.2006DOI Listing

Publication Analysis

Top Keywords

scirc srad
12
speckle-tracking echocardiography
8
left ventricular
8
scarring rat
8
myocardial infarction
8
two-dimensional echocardiographic
8
echocardiography correctly
4
correctly identifies
4
identifies segmental
4
segmental left
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!