(31)Phosphorus magnetic resonance spectroscopy ((31)P-MRS) allows in vivo investigation of cerebral phospholipid and energy metabolism. Using 2D chemical shift imaging, this method can be applied to study multiple brain areas and to assess concentrations of both phospholipids and high-energy phosphates. The purpose of our study was to assess multiregional metabolic profiles in schizophrenia using a 2D-resolved MRS technique, and to assess the intercorrelation of findings. We applied (31)P-MRS chemical shift imaging in 31 schizophrenia patients (12 antipsychotic-naïve first-episode and 19 antipsychotic-free multi-episode patients) and 31 healthy age- and sex-matched controls. Spatially resolved maps were compared for the main metabolites of the (31)P spectrum. Metabolites of phospholipid (PME and PDE) and energy (PCr and Pi) metabolism were significantly reduced in bilateral prefrontal and medial temporal (including hippocampal) brain regions, caudate nucleus, thalamus and anterior cerebellum as compared to controls. Moreover, factor analysis of these changes showed a characteristic spatial pattern of changes, which demonstrates significant associations between alterations of phospholipid and energy metabolism, and between metabolic alterations and severity of symptoms (BPRS total score, but not SANS or SAPS scores). This suggests a pattern of intercorrelated changes of these metabolic markers. Results support the notion of disturbed phospholipid turnover in schizophrenia, probably unrelated to prior pharmacological treatment, and associated with increased energy demand.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2006.12.023 | DOI Listing |
Front Mol Biosci
January 2025
Division of Maternal and Fetal Medicine, Fundación Para la Investigación Biomédica, La Paz University Hospital, Madrid, Spain.
Introduction: Gestational diabetes mellitus (GDM) is a global health concern with significant short and long-term complications for both mother and baby. Early prediction of GDM, particularly late-onset, is crucial for implementing timely interventions to mitigate adverse outcomes. In this study, we conducted a comprehensive metabolomic analysis to explore potential biomarkers for early GDM prediction.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA.
The Epstein-Barr virus (EBV) infects nearly 90% of adults globally and is linked to over 200,000 annual cancer cases. Immunocompromised individuals from conditions such as primary immune disorders, HIV, or posttransplant immunosuppressive therapies are particularly vulnerable because of EBV's transformative capability. EBV remodels B cell metabolism to support energy, biosynthetic precursors, and redox equivalents necessary for transformation.
View Article and Find Full Text PDFKidney Int
January 2025
Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA; Southern Arizona VA Health Care System, Tucson, Arizona, USA; Southwest Environmental Health Science Center, University of Arizona, Tucson, Arizona, USA. Electronic address:
The kidney is one of the most metabolically demanding organs in the human body and requires a large amount of energy, in the form of adenosine triphosphate (ATP), to perform and maintain normal renal functions. To meet this energy demand, proximal tubule cells within the nephron segments of the renal cortex are mitochondrially dense with high oxygen consumption rates. Mitochondria are complex organelles involved in diverse cellular and molecular functions, including the production of ATP, calcium homeostasis, and phospholipid regulation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, United Kingdom.
The onset and development of Alzheimer's disease is linked to the accumulation of pathological aggregates formed from the normally monomeric amyloid-β peptide within the central nervous system. These Aβ aggregates are increasingly successfully targeted with clinical therapies at later stages of the disease, but the fundamental molecular steps in early stage disease that trigger the initial nucleation event leading to the conversion of monomeric Aβ peptide into pathological aggregates remain unknown. Here, we show that the Aβ peptide can form biomolecular condensates on lipid bilayers both in molecular assays and in living cells.
View Article and Find Full Text PDFMetabolites
January 2025
Key Laboratory of Mariculture and Enhancement, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China.
The inherent deficiency of phospholipids in limits its nutritional value as live prey for marine fish larvae. In our previous study, we optimized a phospholipid enrichment method by incubating nauplii with 10 g of soybean lecithin per m of seawater for 12 h, significantly enhancing their phospholipid content. : The present study evaluated the impact of this enrichment on yellow drum () larvae, focusing on growth performance, intestinal morphology, body composition, weaning success, and desiccation stress resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!