This paper describes the characterization of solid lipid nanodispersions (SLN) prepared with a 1:1 mixture of theobroma oil and goat fat as the main lipid matrix and Phospholipon 90G (P90G) as a stabilizer heterolipid, using polysorbate 80 as the mobile surfactant, with a view to applying the SLN in drug delivery. The 1:1 lipid mixture and P90G constituting the lipid matrix was first homogeneously prepared by fusion. Thereafter, the SLN were formulated with a gradient of polysorbate 80 and constant lipid matrix concentration by melt-high pressure homogenisation. The SLN were characterized by time-resolved particle size analysis, zeta potential and osmotic pressure measurements, differential scanning calorimetry (DSC) and wide angle X-ray diffraction (WAXD). Transmission electron microscopy (TEM) and isothermal heat conduction microcalorimetry (IMC) which monitors the in situ crystallization were also carried out on the SLN containing P90G and 1.0 % w/w of polysorbate 80. The results obtained in these studies were compared with SLN prepared with theobroma oil with and without phospholipid. Particle size analysis of SLN indicated reduction in size with increase in concentration of mobile surfactant and was in the lower nanometer range after 3 months except SLN prepared without P90G or polysorbate 80. The lipid nanoparticles had negative potentials after 3 months. WAXD and DSC studies revealed low crystalline SLN after 3 months of storage except in WAXD of SLN formulated with 1.0 % w/w polysorbate 80. TEM micrograph of the SLN containing 1.0 % w/w polysorbate 80 revealed discrete particles whose sizes were in consonance with the static light scattering measurement. In situ crystallization studies in IMC revealed delayed crystallization of the SLN with 1.0 % w/w polysorbate 80. Results indicate lipid mixtures produced SLN with lower crystallinity and higher particle sizes compared with SLN prepared with theobroma oil alone with or without P90G, and would lead to higher drug incorporation efficiency when used in formulation of actives. Mixtures of theobroma oil and goat fat would be suitable for the preparation of nanostructured lipid carriers. SLN of theobroma oil containing phospholipid could prove to be a good ocular or parenteral drug delivery system considering the low particle size, particle size stability and in vivo tolerability of the component lipids. SLN prepared with lipid admixture, which had higher increase in d(90%) on storage are suitable for preparation of topical and transdermal products.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2006.12.004DOI Listing

Publication Analysis

Top Keywords

sln prepared
20
theobroma oil
20
sln
16
particle size
16
w/w polysorbate
16
lipid matrix
12
lipid
10
solid lipid
8
lipid nanodispersions
8
oil goat
8

Similar Publications

The nucleus tractus solitarius (NTS) contains neurons that relay sensory swallowing commands information from the oropharyngeal cavity and swallowing premotor neurons of the dorsal swallowing group (DSG). However, the spatio-temporal dynamics of the interplay between the sensory relay and the DSG is not well understood. Here, we employed fluorescence imaging after microinjection of the calcium indicator into the NTS in an arterially perfused brainstem preparation of rat (n = 8) to investigate neuronal population activity in the NTS in response to superior laryngeal nerve (SLN) stimulation.

View Article and Find Full Text PDF

Curcumin-Loaded Lipid Nanoparticles: A Promising Antimicrobial Strategy Against in Endodontic Infections.

Pharmaceutics

January 2025

Laboratório Associado para a Química Verde-Rede de Química e Tecnologia (LAQV, REQUIMTE), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.

This study aims to evaluate the efficacy of curcumin (CUR), a natural polyphenol with potent antimicrobial and anti-inflammatory properties, when formulated as solid lipid nanoparticles (CUR-loaded SLN) against . Solid lipid nanoparticles (SLNs) were prepared as a carrier for CUR, which significantly improved its solubility. SLNs made with cetyl palmitate and Tween 80 were obtained via the hot ultrasonication method.

View Article and Find Full Text PDF

Skin ageing, driven predominantly by oxidative stress from reactive oxygen species (ROS) induced by environmental factors like ultraviolet A (UVA) radiation, accounts for approximately 80% of extrinsic skin damage. L-glutathione (GSH), a potent antioxidant, holds promise in combating UVA-induced oxidative stress. However, its instability and limited penetration through the stratum corneum hinder its topical application.

View Article and Find Full Text PDF

Formulation, Characterization, and Cytotoxic Effect of Indomethacin-Loaded Nanoparticles.

Antiinflamm Antiallergy Agents Med Chem

December 2024

Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.

Background: Indomethacin (IND), classified as class 2 in the Biopharmaceutical Classification System (BCS), has emerged as an anti-inflammatory agent with low solubility and high permeability. Widely used in the treatment of various diseases, such as rheumatoid arthritis and ankylosing spondylitis, this drug is well-known for its adverse effects, particularly in the stomach, and a short biological half-life, which is around 1.5-2 hours.

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on enhancing the delivery of rivaroxaban through optimized solid lipid nanoparticles (SLN) to improve their size, entrapment efficiency, and ability to dissolve and cross the blood-brain barrier.
  • A total of 32 SLN formulations were created using a central composite design, and methods like response surface methodology (RSM) and artificial neural networks (ANN) were employed to predict their properties based on various factors.
  • The optimized SLN had an average particle size of 159.8 nm and an entrapment efficiency of 74.3%. The ANN model was found to be more accurate than RSM, indicating its effectiveness in optimizing pharmaceutical formulations.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!