The VP1 structural protein of enterovirus 71 interacts with human ornithine decarboxylase and gene trap ankyrin repeat.

Microb Pathog

Human Genome Laboratory, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge 117597, Singapore.

Published: April 2007

Enterovirus 71 (EV71) is a major etiological agent of hand, foot and mouth disease (HFMD). Several outbreaks in East Asia were associated with neurological complications and numerous deaths. EV71 possesses four structural proteins VP1-VP4 that are necessary in the formation of the pentameric icosahedral capsid. The viral capsid contributes to virulence, and VP1 is a prime target for EV71 vaccine development. Using yeast two-hybrid analysis, we demonstrated binding affinity between VP1 and three human proteins, i.e. ornithine decarboxylase (ODC1), gene trap ankyrin repeat (GTAR), and KIAA0697 expressed in brain tissue. These interactions were authenticated by co-immunoprecipitation experiments, and by indirect immunofluorescent confocal microscopy of transfected and EV71-infected Vero cells. The significant interaction between VP1 and ODC1 may compromise the latter's activity, and interfere with polyamine biosynthesis, growth and proliferation of EV71-infected cells. The interaction between VP1 and GTAR is noteworthy, since ankyrin proteins are associated with certain neural cell adhesion molecules and with the CRASH neurological syndrome. Given that VP1 is synthesized in large amounts during productive infection, these viral-host protein interactions may provide insights into the role of VP1 in the pathogenesis of EV71 disease and its neurological complications such as acute flaccid paralysis and encephalitis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micpath.2006.12.002DOI Listing

Publication Analysis

Top Keywords

ornithine decarboxylase
8
gene trap
8
trap ankyrin
8
ankyrin repeat
8
neurological complications
8
cells interaction
8
interaction vp1
8
vp1
7
vp1 structural
4
structural protein
4

Similar Publications

Salivary microbiota dysbiosis and elevated polyamine levels contribute to the severity of periodontal disease.

BMC Oral Health

January 2025

Department of Life Sciences, GITAM (Deemed to be University), GITAM School of Science, Visakhapatnam, Andhra Pradesh, 530 045, India.

Background: The oral cavity is a complex environment which harbours the second largest and most diverse microflora after the gastrointestinal tract. The bacteriome in the oral cavity plays a pivotal role in promoting the health and well-being of human beings. Gingivitis, an inflammation of the gingival tissue, arises due to plaque accumulation on the teeth, often leads to periodontitis.

View Article and Find Full Text PDF

In vitro and in silico approaches manifest the anti-leishmanial activity of wild edible mushroom .

In Silico Pharmacol

December 2024

Laboratory of Cell and Molecular Biology, Department of Botany, Centre of Advanced Study, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019 India.

Visceral Leishmaniasis, caused by is the second most deadly parasitic disease, causing over 65,000 deaths annually. Synthetic drugs available in the market, to combat this disease, have numerous side effects. In this backdrop, we aim to find safer antileishmanial alternatives with minimal side effects from mushrooms, which harbour various secondary metabolites with promising efficacy.

View Article and Find Full Text PDF

Supraphysiological androgen (SPA) treatment can paradoxically restrict growth of castration-resistant prostate cancer with high androgen receptor (AR) activity, which is the basis for use of Bipolar Androgen Therapy (BAT) for patients with this disease. While androgens are widely appreciated to enhance anabolic metabolism, how SPA-mediated metabolic changes alter prostate cancer progression and therapy response is unknown. Here, we report that SPA markedly increased intracellular and secreted polyamines in prostate cancer models.

View Article and Find Full Text PDF

Rhizophagus irregularis regulates RiCPSI and RiCARI expression to influence plant drought tolerance.

Plant Physiol

December 2024

State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.

Arbuscular mycorrhizal fungi (AMF) can transfer inorganic nitrogen (N) from the soil to host plants to cope with drought stress, with arginine synthesis and NH4+ transport being pivotal processes. However, the regulatory mechanism underlying these processes remains unclear. Here, we found that drought stress upregulated expression of genes involved in the N transfer pathway and putrescine and glutathione synthesis in the mycorrhizal structures of Rhizophagus irregularis within alfalfa (Medicago sativa) roots, i.

View Article and Find Full Text PDF

Emergomyces africanus is a thermally dimorphic pathogen causing severe morbidity and mortality in immunocompromized patients. Its transition to a pathogenic yeast-like phase in the human host is a notable virulence mechanism. Recent studies suggest polyamines as key players in dimorphic switching, yet their precise functions remain enigmatic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!