The compositions of the volatile and polar fractions from two coexisting Black Sea invertebrates, the mussel Mytilus galloprovincialis and the beadlet anemone Actinia equina, were established. The main metabolites in the volatile fraction from the investigated animals appeared to be methyl esters of fatty acids and fatty aldehydes. In the polar fraction from both animals low concentrations of free acids and nitrogen-containing compounds were obtained. Free carbohydrates were in much higher concentrations in M. galloprovincialis than in A. equina. Some sterols, probably as polar conjugates, were identified mainly in A. equina. Significant changes among all compounds appeared after treatment of both invertebrates with two different concentrations of cobalt ions. The variety of changes in each invertebrate could be due to their different evolutionary status. The effect of cobalt ions was often stronger at medium cobalt-ion concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpb.2006.12.017DOI Listing

Publication Analysis

Top Keywords

cobalt ions
12
volatile polar
8
mytilus galloprovincialis
8
actinia equina
8
ions metabolism
4
metabolism volatile
4
polar
4
polar compounds
4
compounds marine
4
marine invertebrates
4

Similar Publications

The endogenous reduction of nitrite to nitrosyl is drawing increasing attention as a protective mechanism against hypoxic injury in mammalian physiology and as an alternative source of NO, which is involved in a wide variety of biological activities. Thus, chemical mechanisms for this transformation, which are mediated by metallo proteins, are of considerable interest. The study described here examines the reactions of the biomimetic models Co(TTP)(NO) (TTP = meso-tetratolylporphyrinato dianion) and Mn(TPP)(ONO) (TPP = meso-tetraphenyl-porphyrinato dianion) in sublimated solid films with hydrogen sulfide (HS) and with ethanethiol (EtSH) at various temperatures from 77 K to room temperature using in situ infrared and optical spectroscopy.

View Article and Find Full Text PDF

Hydroxyapatite (HA) is an engineered biomaterial that closely resembles the hard tissue composition of humans. Biological HA is commonly non-stoichiometric and features lower crystallinity and higher solubility than stoichiometric HA. The chemical compositions of these biomaterials include calcium (Ca), phosphorus (P), and trace amounts of various ions such as magnesium (Mg), zinc (Zn), and strontium (Sr).

View Article and Find Full Text PDF

Four distinct zeolitic imidazolate frameworks (ZIFs) are prepared using zinc and cobalt ions with 2-aminobenzimidazole and 2-methylimidazole as linkers to explore their electrochemical properties as platforms for aldehyde detection. The resulting ZIF-based sensors exhibit high sensitivity, low detection limits, and robust performance when applied to real-world samples.

View Article and Find Full Text PDF

Intracellular metal ion-based chemistry for programmed cell death.

Chem Soc Rev

January 2025

Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Madison, Madison, WI 53705, USA.

Intracellular metal ions play essential roles in multiple physiological processes, including catalytic action, diverse cellular processes, intracellular signaling, and electron transfer. It is crucial to maintain intracellular metal ion homeostasis which is achieved by the subtle balance of storage and release of metal ions intracellularly along with the influx and efflux of metal ions at the interface of the cell membrane. Dysregulation of intracellular metal ions has been identified as a key mechanism in triggering programmed cell death (PCD).

View Article and Find Full Text PDF

Enhancing photocatalytic hydrogen evolution of carbon nitride through high-valent cobalt active sites in cobalt sulfide co-catalyst.

J Colloid Interface Sci

December 2024

School of Materials Science & Engineering, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Zotye Automobile Co., Ltd, Jinhua 321399, PR China. Electronic address:

Article Synopsis
  • Photocatalytic hydrogen production using solar energy is an effective solution for energy and environmental issues, but inefficiencies arise from the rapid recombination of charges in semiconductor catalysts.
  • Researchers used a co-catalyst loading strategy, specifically incorporating cobalt sulfide (CoS) onto bulk carbon nitride (BCN), to enhance photocatalytic performance for hydrogen production.
  • The optimal CoS-BCN composite (with 15% CoS) showed a performance improvement of 156 times compared to BCN alone, as CoS nanoparticles facilitate electron transfer and reduce charge recombination, enhancing hydrogen evolution efficiency.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!