To elucidate the physiological importance of neuronal (N)-type calcium channels in sympathetic controls, we analyzed N-type channel-deficient (NKO) mice. Immunoprecipitation analysis revealed increased interaction between beta3 (a major accessory subunit of N-type channels) and R-type channel-forming CaV2.3 in NKO mice. R-R intervals in NKO ECG recordings were elongated and fluctuating, suggesting disturbed sympathetic tonus. N-type channel inhibitors elongated the R-R interval in control mice, whereas R-type channel blocking with SNX-482 significantly affected NKO but not control mice, indicating a compensatory role for R-type channels. Echocardiography and Langendorff heart analysis confirmed a major role for R-type channels in NKO mice. Combined, our biochemical and physiological analyses strongly suggest that the remaining sympathetic tonus in NKO mice is dependent on R-type calcium channels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2007.01.087 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!