In this article, we propose batch-type learning vector quantization (LVQ) segmentation techniques for the magnetic resonance (MR) images. Magnetic resonance imaging (MRI) segmentation is an important technique to differentiate abnormal and normal tissues in MR image data. The proposed LVQ segmentation techniques are compared with the generalized Kohonen's competitive learning (GKCL) methods, which were proposed by Lin et al. [Magn Reson Imaging 21 (2003) 863-870]. Three MRI data sets of real cases are used in this article. The first case is from a 2-year-old girl who was diagnosed with retinoblastoma in her left eye. The second case is from a 55-year-old woman who developed complete left side oculomotor palsy immediately after a motor vehicle accident. The third case is from an 84-year-old man who was diagnosed with Alzheimer disease (AD). Our comparisons are based on sensitivity of algorithm parameters, the quality of MRI segmentation with the contrast-to-noise ratio and the accuracy of the region of interest tissue. Overall, the segmentation results from batch-type LVQ algorithms present good accuracy and quality of the segmentation images, and also flexibility of algorithm parameters in all the comparison consequences. The results support that the proposed batch-type LVQ algorithms are better than the previous GKCL algorithms. Specifically, the proposed fuzzy-soft LVQ algorithm works well in segmenting AD MRI data set to accurately measure the hippocampus volume in AD MR images.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mri.2006.09.043DOI Listing

Publication Analysis

Top Keywords

magnetic resonance
12
segmentation techniques
12
resonance imaging
8
batch-type learning
8
learning vector
8
vector quantization
8
lvq segmentation
8
mri segmentation
8
mri data
8
algorithm parameters
8

Similar Publications

Neuropathological contributions to grey matter atrophy and white matter hyperintensities in amnestic dementia.

Alzheimers Res Ther

January 2025

Laboratory for Clinical Neuroscience, Center for Biomedical Technology, Universidad Politécnica de Madrid, IdISSC, Crta M40, km38, Madrid, 28223, Spain.

Background: Dementia patients commonly present multiple neuropathologies, worsening cognitive function, yet structural neuroimaging signatures of dementia have not been positioned in the context of combined pathology. In this study, we implemented an MRI voxel-based approach to explore combined and independent effects of dementia pathologies on grey and white matter structural changes.

Methods: In 91 amnestic dementia patients with post-mortem brain donation, grey matter density and white matter hyperintensity (WMH) burdens were obtained from pre-mortem MRI and analyzed in relation to Alzheimer's, vascular, Lewy body, TDP-43, and hippocampal sclerosis (HS) pathologies.

View Article and Find Full Text PDF

Background: Ankle sprains often result in muscle atrophy and reduced range of motion, which can cause long-term ankle instabilities. Understanding the changes to muscle-such as atrophy-and concomitant changes to deep fascia-which may thicken alongside muscle loss-after ankle sprain injury is important to understanding structural changes about the joint and how they might contribute to longer-term impairments. Here, we employ advanced MRI to investigate skeletal muscle and fascial structural changes during the recovery period of one patient undergoing immobilization after ankle sprains.

View Article and Find Full Text PDF

Inter-individual variability in symptoms and the dynamic nature of brain pathophysiology present significant challenges in constructing a robust diagnostic model for migraine. In this study, we aimed to integrate different types of magnetic resonance imaging (MRI), providing structural and functional information, and develop a robust machine learning model that classifies migraine patients from healthy controls by testing multiple combinations of hyperparameters to ensure stability across different migraine phases and longitudinally repeated data. Specifically, we constructed a diagnostic model to classify patients with episodic migraine from healthy controls, and validated its performance across ictal and interictal phases, as well as in a longitudinal setting.

View Article and Find Full Text PDF

Post-traumatic stress and major depressive disorders are associated with "overgeneral" autobiographical memory, or impaired recall of specific life events. Interpersonal trauma exposure, a risk factor for both conditions, may influence how symptomatic trauma-exposed (TE) individuals segment everyday events. The ability to parse experience into units (event segmentation) supports memory.

View Article and Find Full Text PDF

Multivariate patterns among multimodal neuroimaging and clinical, cognitive, and daily functioning characteristics in bipolar disorder.

Neuropsychopharmacology

January 2025

Neurocognition and Emotion in Affective Disorders (NEAD) Centre, Psychiatric Centre Copenhagen, Mental Health Services, Capital Region of Denmark, Frederiksberg, Denmark.

Individuals with bipolar disorder (BD) show heterogeneity in clinical, cognitive, and daily functioning characteristics, which challenges accurate diagnostics and optimal treatment. A key goal is to identify brain-based biomarkers that inform patient stratification and serve as treatment targets. The objective of the present study was to apply a data-driven, multivariate approach to quantify the relationship between multimodal imaging features and behavioral phenotypes in BD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!