Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Two processes permit the urine pH and the medullary interstitial pH to remain in an "ideal range" to minimize the risk of forming kidney stones. First, a medullary shunt for NH(3) maintains the urine pH near 6.0 to minimize uric acid precipitation when distal H(+) secretion is high. Second, excreting dietary alkali excreting alkali as a family of organic anions--including citrate--rather than as bicarbonate maintains the urine pH near 6.0 while urinary citrate chelates ionized calcium, which minimizes CaHPO(4) precipitation. In patients with idiopathic hypercalciuria and recurrent calcium oxalate stones, the initial nidus is a calcium phosphate precipitate on the basolateral membrane of the thin limb of the loop of Henle (Randall's plaque). Formation of this precipitate requires medullary alkalinization; K(+) -depletion and augmented medullary H(+)/K(+) -ATPase may be predisposing factors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.semnephrol.2006.10.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!