Somitogenesis is the key developmental process that lays down the framework for a metameric body in vertebrates. Somites are generated from the un-segmented presomitic mesoderm (PSM) by a pre-patterning process driven by a molecular oscillator termed the segmentation clock. The Delta-Notch intercellular signaling pathway and genes belonging to the hairy (h) and Enhancer of split (E(spl))-related (h/E(spl)) family of transcriptional repressors are conserved components of this oscillator. A subset of these genes, called cyclic genes, is characterized by oscillating mRNA expression that sweeps anteriorly like a wave through the embryonic PSM. Periodic transcriptional repression by H/E(spl) proteins is thought to provide a critical part of a negative feedback loop in the oscillatory process, but it is an open question how many cyclic h/E(spl) genes are involved in the somitogenesis clock in any species, and what distinct roles they might play. From a genome-wide search for h/E(spl) genes in the zebrafish, we previously estimated a total of five cyclic members. Here we report that one of these, the mHes5 homologue her15 actually exists as a very recently duplicated gene pair. We investigate the expression of this gene pair and analyse its regulation and activity in comparison to the paralogous her12 gene, and the other cyclic h/E(spl) genes in the zebrafish. The her15 gene pair and her12 display novel and distinct expression features, including a caudally restricted oscillatory domain and dynamic stripes of expression in the rostral PSM that occur at the future segmental borders. her15 expression stripes demarcate a unique two-segment interval in the rostral PSM. Mutant, morpholino, and inhibitor studies show that her12 and her15 expression in the PSM is regulated by Delta-Notch signaling in a complex manner, and is dependent on her7, but not her1 function. Morpholino-mediated her12 knockdown disrupts cyclic gene expression, indicating that it is a non-redundant core component of the segmentation clock. Over-expression of her12, her15 or her7 disrupts cyclic gene expression and somite border formation, and structure function analysis of Her7 indicates that DNA binding, but not Groucho-recruitment seems to be important in this process. Thus, the zebrafish has five functional cyclic h/E(spl) genes, which are expressed in a distinct spatial configuration. We propose that this creates a segmentation oscillator that varies in biochemical composition depending on position in the PSM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ydbio.2007.01.004 | DOI Listing |
Protein Expr Purif
December 2016
Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China. Electronic address:
The Esx-1 cluster encodes a special secretion system that is important for granuloma formation and virulence when Mycobacterium tuberculosis infects the host. As one of the 'core' genes in the cluster, Rv3880c gene codes an Esx-1 secretion-associated protein EspL from Mycobacterium tuberculosis (MtEspL). It has been reported that EspL had a strong influence on the secretion of other two virulence factors, EsxA and EspE.
View Article and Find Full Text PDFDev Biol
November 2015
Ben May Department for Cancer Research, The University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA. Electronic address:
Notch and EGFR signaling pathways play important roles in photoreceptor differentiation during Drosophila eye development. Notch signaling induces Enhancer of Split (E(spl)) proteins to repress atonal (ato) expression and restrict R8 photoreceptor cell fate. The R8 precursors express rhomboid (rho), which is required for the release of active EGFR ligand to activate EGFR signaling in surrounding cells for the subsequent stepwise recruitment.
View Article and Find Full Text PDFPLoS Genet
May 2013
Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom.
Toxicol In Vitro
April 2012
Department of Anatomy and Neurobiology, College of Medicine, University of Vermont, USA.
Methylmercury (MeHg) is a ubiquitous toxicant that targets the developing fetal nervous system. MeHg interacts with the Notch signaling pathway, a highly-conserved intercellular signaling mechanism required for normal development. Notch signaling is conveyed by activation of the genes in the enhancer of split (E(spl)) locus in Drosophila.
View Article and Find Full Text PDFMol Cell
September 2009
Department of Biochemistry, Center for Biomedical Genetics, Erasmus University Medical Center, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands.
Histone chaperones are involved in a variety of chromatin transactions. By a proteomics survey, we identified the interaction networks of histone chaperones ASF1, CAF1, HIRA, and NAP1. Here, we analyzed the cooperation of H3/H4 chaperone ASF1 and H2A/H2B chaperone NAP1 with two closely related silencing complexes: LAF and RLAF.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!