1,2-Ethylene-di-N-n-propylcarbamate (1) is characterized as an essential activator of Pseudomonas species lipase while 1,2-ethylene-di-N-n-butyl-, t-butyl-, n-heptyl-, and n-octyl-carbamates (2-5) are characterized as the pseudo substrate inhibitors of the enzyme in the presence of the detergent taurocholate or triton X-100. The inhibition and activation reactions are more sensitive in taurocholate than in triton X-100. From CD studies, the enzyme changes conformations in the presence of the detergent and further alters conformations by addition of the carbamate activator or inhibitor into the enzyme-detergent adduct. Therefore, this study suggests that the conformational change of lipase during interfacial activation is a continuous process to expose the active site of the enzyme to substrate. From 600 MHz (1)H NMR studies, the conformations of the alpha- and beta-methylene moieties of the activator 1,2-ethylene-di-N-n-propylcarbamate in the presence of substrate change after adding taurocholate into the mixture, and the conformations of the beta-methylene moieties of the inhibitor 1,2-ethylene-di-N-n-butylcarbamate in the presence of substrate alter after adding taurocholate into the mixture.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemphyslip.2006.12.005DOI Listing

Publication Analysis

Top Keywords

inhibition activation
8
pseudomonas species
8
species lipase
8
presence detergent
8
taurocholate triton
8
triton x-100
8
beta-methylene moieties
8
presence substrate
8
adding taurocholate
8
taurocholate mixture
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!