In microbial fuel cells (MFCs) bacteria generate electricity by mediating the oxidation of organic compounds and transferring the resulting electrons to an anode electrode. The objective of this study was to test the possibility of generating electricity with rumen microorganisms as biocatalysts and cellulose as the electron donor in two-compartment MFCs. The anode and cathode chambers were separated by a proton exchange membrane and graphite plates were used as electrodes. The medium in the anode chamber was inoculated with rumen microorganisms, and the catholyte in the cathode compartment was ferricyanide solution. Maximum power density reached 55 mW/m(2) (1.5 mA, 313 mV) with cellulose as the electron donor. Cellulose hydrolysis and electrode reduction were shown to support the production of current. The electrical current was sustained for over 2 months with periodic cellulose addition. Clarified rumen fluid and a soluble carbohydrate mixture, serving as the electron donors, could also sustain power output. Denaturing gradient gel electrophoresis (DGGE) of PCR amplified 16S rRNA genes revealed that the microbial communities differed when different substrates were used in the MFCs. The anode-attached and the suspended consortia were shown to be different within the same MFC. Cloning and sequencing analysis of 16S rRNA genes indicated that the most predominant bacteria in the anode-attached consortia were related to Clostridium spp., while Comamonas spp. abounded in the suspended consortia. The results demonstrated that electricity can be generated from cellulose by exploiting rumen microorganisms as biocatalysts, but both technical and biological optimization is needed to maximize power output.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bit.21366 | DOI Listing |
Front Microbiol
December 2024
Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China.
Yak () is a large ruminant endemic to the Tibetan plateau. The addition of enzyme complexes to feed can significantly improve their growth performance. Therefore, studying the effects of ruminant compound enzyme preparations dosage on yak rumen microorganisms and production performance is crucial to promoting the development of the yak industry.
View Article and Find Full Text PDFTrop Anim Health Prod
December 2024
Department of Animal Science, Federal University of Campina Grande, Patos, Paraíba, 58708110, Brazil.
This study aimed to develop, characterize, and validate an encapsulant based on beeswax (BW) for rumen-protected fat (RPF) using the melting emulsification technique. Buriti oil (BO) was used as the core material, and BW was used as the encapsulating material at three different proportions of BW:BO (9:1, 4:1, and 2:1 g/g ratio respectively). RPF microspheres (BWBO9:1, BWBO4:1, and BWBO2:1) were characterized and tested in six 3-year-old castrated male Santa Ines sheep (average body weight of 56.
View Article and Find Full Text PDFSci Data
December 2024
Embrapa Southeast Livestock, São Carlos, Brazil.
Nelore is a Bos indicus beef breed that is well-adapted to tropical environments and constitutes most of the world's largest commercial cattle herd: the Brazilian bovine herd. Despite its significance, microbial genome recovery from ruminant microbiomes has largely excluded representatives from Brazilian Nelore cattle. To address this gap, this study presents a comprehensive dataset of microbial genomes recovered from the rumen and feces of 52 Brazilian Nelore bulls.
View Article and Find Full Text PDFAnimals (Basel)
November 2024
College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China.
In mammals, the melatonin (Mel) concentration in the gastrointestinal tract is 400 times greater than in the pineal gland. However, the origin of Mel in the gastrointestinal tract and its role in reproductive regulation remains unclear. Therefore, we analyzed three potential Mel sources (feed, microorganisms, and the rumen wall) for their contribution to high Mel levels in the rumen and their biological effects.
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!