Human papillomavirus type 16 is commonly implicated in cervical cancers. The viral genome encodes potential targets like the oncoprotein E7, expressed in transformed cells but thought to represent a poorly immunogenic antigen. We describe in this work a DNA-based vaccination protocol aimed at inducing an efficient anti-E7 immune response in vivo. Plasmids allowing the expression of the E7 protein in distinct cellular compartments were generated and assayed in an in vivo model of tumor growth. Our data demonstrate that mice vaccinated with a plasmid encoding for an E7 protein fused to a domain of the MHC class II-associated invariant chain (IiE7) were protected against tumor challenge. Mice immunized against an ubiquitinated form of E7 (Ub(Ala)E7) failed to control tumor growth. Protection induced by IiE7 was correlated with the development of CD8+ CTL and required the presence of CD4+ cells. In vitro studies confirmed that the IiE7 fusion protein was expressed at high levels in the endosomal compartment of transfected cells, while the natural and the ubiquitin-modified form of E7 were mainly nuclear. The present study suggests that an efficient anti-tumor response can be induced in vivo by DNA constructs encoding for E7 protein forms localizing at the endosomal compartment.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eji.200636233DOI Listing

Publication Analysis

Top Keywords

human papillomavirus
8
papillomavirus type
8
tumor growth
8
encoding protein
8
endosomal compartment
8
protein
5
dna vaccine
4
vaccine encoding
4
encoding endosome-targeted
4
endosome-targeted human
4

Similar Publications

Upon infection, human papillomavirus (HPV) manipulates host cell gene expression to create an environment that is supportive of a productive and persistent infection. The virus-induced changes to the host cell's transcriptome are thought to contribute to carcinogenesis. Here, we show by RNA-sequencing that oncogenic HPV18 episome replication in primary human foreskin keratinocytes (HFKs) drives host transcriptional changes that are consistent between multiple HFK donors.

View Article and Find Full Text PDF

This study examined the relationship between the vaginal microbiome, HPV infection, and cervical intraepithelial neoplasia (CIN) in 173 women. Subjects were grouped by HPV status and cervical lesion severity, ranging from HPV-negative to CIN Grade 2 or higher. Using VALENCIA classification, the study identified different community state types (CSTs) of vaginal microbiota, with CST IV subtypes (Staphylococcus dominated) showing high diversity and increased pathogenic bacteria.

View Article and Find Full Text PDF

SUMMARYHuman papillomaviruses (HPVs) are small DNA viruses that are responsible for significant disease burdens worldwide, including cancers of the cervix, anogenital tract, and oropharynx. HPVs infect stratified epithelia at a variety of body locations and link their productive life cycles to the differentiation of the host cell. These viruses have evolved sophisticated mechanisms to exploit cellular pathways, such as DNA damage repair (DDR), to regulate their life cycles.

View Article and Find Full Text PDF

Incorporating molecular testing for human papillomavirus (HPV) into the screening of cervical specimens can improve risk stratification and, in turn, patient management. Infection with a high-risk (HR) HPV genotype is associated with greater risk for persistent infection, viral integration, and progression of cervical neoplasia. Current guidelines consider HPV 16 or HPV 18 clinically actionable with referral to colposcopy; however, 12 Other HR HPV genotypes have been associated with cervical cancer risk, suggesting a benefit of extended genotyping.

View Article and Find Full Text PDF

Objectives: Human papillomavirus (HPV) is the leading cause of cervical cancer, with adolescent girls and young women (AGYW) in sub-Saharan Africa carrying a disproportionately high burden of infection. Hormonal contraceptives may influence HPV acquisition, persistence, and clearance, but evidence remains inconclusive. This sub-study aimed to evaluate the impact of different hormonal contraceptives on HPV prevalence and genotype distribution in AGYW.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!