S100P is expressed in several malignant neoplasms. It was previously demonstrated that S100P is involved in the very early stages of breast carcinogenesis. In the present study we used a retrovirus-mediated transfer of antisense-S100P in order to check whether the decrease in expression of this protein could lead to alterations in the cell cycle of epithelial cells of human breast cancer. The T47D breast carcinoma cell line, a human breast epithelial cell that expresses high levels of S100P, was a tool used in this study to investigate the alteration in cell cycle induced by a retrovirus-mediated transfer of antisense-S100P. First we used the real-time PCR technique to quantify the gene expression. The results showed a reduction of 63% of expression within the T47D-S100P-A/S infected population compared with control T47D-LXSN clones. To determine the impact of the S100P antisense technique on protein expression in T47D cells, we performed immunofluorescence staining and analyzed the resulting images using a confocal microscope. The images showed much less pronounced antibody marking of the S100P protein in the T47D-S100P-A/S compared with control cells. To evaluate whether the antisense approach caused any alteration in the cell cycle, we concluded the study with flow cytometric analysis of the cell distribution. Our findings indicated that, in our model, S100P-antisense cells showed a 23% reduction of cells at the S-phase. Using transduction techniques with an S100P antisense-retroviral construct we were able to demonstrate a significant reduction in S-phase of the T47D cell cycle. To the best of our knowledge, this is the first time that an antisense approach has been used against S100P mRNA in breast cancer epithelial cells. The results showed here seem to further classify S100P as a protein that might be involved in the cell cycle imbalance observed during breast carcinogenesis.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cell cycle
20
human breast
12
breast cancer
12
epithelial cells
12
s100p
9
cancer epithelial
8
s100p antisense-retroviral
8
antisense-retroviral construct
8
breast carcinogenesis
8
retrovirus-mediated transfer
8

Similar Publications

Background: Continuous fermentation offers advantages in improving production efficiency and reducing costs, making it highly competitive for industrial ethanol production. A key requirement for Saccharomyces cerevisiae strains used in this process is their tolerance to high ethanol concentrations, which enables them to adapt to continuous fermentation conditions. To explore how yeast cells respond to varying levels of ethanol stress during fermentation, a two-month continuous fermentation was conducted.

View Article and Find Full Text PDF

Quercetin triggers cell apoptosis-associated ROS-mediated cell death and induces S and G2/M-phase cell cycle arrest in KON oral cancer cells.

BMC Complement Med Ther

January 2025

Division of Pharmacology and Biopharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, Thailand.

Background: Plant flavonoids such as quercetin are useful for both the therapeutic and preventive care of a variety of illnesses. Nevertheless, their antitumor efficacy against KON oral cancer is still unknown. Therefore, the aim of this investigation was to examine quercetin's anti-growth, anti-migrative, and anti-invasive characteristics.

View Article and Find Full Text PDF

Bidirectional approach of Punica granatum natural compounds: reduction in lung cancer and SARS-CoV-2 propagation.

BMC Complement Med Ther

January 2025

Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, India.

The spreading of COVID-19 has posed a risk to global health, especially for lung cancer patients. An investigation is needed to overcome the challenges of COVID-19 pathophysiology and lung cancer disease. This study was designed to evaluate the phytoconstituents in Punica granatum peel (PGP), its anti-lung cancer activity, and in silico evaluation for antiviral potential.

View Article and Find Full Text PDF

Full-length transcriptome analysis of male and female gonads in Japanese Eel (Anguilla japonica).

BMC Genomics

January 2025

State Key Laboratory of Mariculture Breeding; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education;Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen, 361021, China.

Background: The Japanese eel (Anguilla japonica) holds significant economic value in East Asia, but limitations in understanding its reproductive biology have hindered advancements in artificial breeding techniques. Previous research has primarily focused on conserved sex differentiation genes, offering limited insights into the broader molecular mechanisms driving gonadal development and sexual dimorphism. To address these limitations, this study aims to investigate key genes and pathways involved in gonadal development through a comprehensive transcriptomic analysis of male and female eel gonads.

View Article and Find Full Text PDF

Resistance mechanisms and therapeutic strategies of CDK4 and CDK6 kinase targeting in cancer.

Nat Cancer

January 2025

Department of Oncological Sciences, Precision Immunology Institute, the Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Cyclin-dependent kinases (CDKs) 4 and 6 (CDK4/6) are important regulators of the cell cycle. Selective CDK4/6 small-molecule inhibitors have shown clinical activity in hormonal receptor-positive (HR) metastatic breast cancer, but their effectiveness remains limited in other cancer types. CDK4/6 degradation and improved selectivity across CDK paralogs are approaches that could expand the effectiveness of CDK4/6 targeting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!