Hyperaldosteronism is associated with impaired vascular reactivity; however, the mechanisms by which aldosterone promotes endothelial dysfunction remain unknown. Glucose-6-phosphate dehydrogenase (G6PD) modulates vascular function by limiting oxidant stress to preserve bioavailable nitric oxide (NO(*)). Here we show that aldosterone (10(-9)-;10(-7) mol/l) decreased endothelial G6PD expression and activity in vitro, resulting in increased oxidant stress and decreased NO(*) levels-similar to what is observed in G6PD-deficient endothelial cells. Aldosterone decreased G6PD expression by increasing expression of the cyclic AMP-response element modulator (CREM) to inhibit cyclic AMP-response element binding protein (CREB)-mediated G6PD transcription. In vivo, infusion of aldosterone decreased vascular G6PD expression and impaired vascular reactivity. These effects were abrogated by spironolactone or vascular gene transfer of G6pd. These findings demonstrate that aldosterone induces a G6PD-deficient phenotype to impair endothelial function; aldosterone antagonism or gene transfer of G6pd improves vascular reactivity by restoring G6PD activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3648863PMC
http://dx.doi.org/10.1038/nm1545DOI Listing

Publication Analysis

Top Keywords

vascular reactivity
16
g6pd expression
12
glucose-6-phosphate dehydrogenase
8
impaired vascular
8
g6pd
8
oxidant stress
8
aldosterone decreased
8
cyclic amp-response
8
amp-response element
8
gene transfer
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!