Rad4(TopBP1) is a scaffold in a protein complex containing both replication proteins and checkpoint proteins and plays essential roles in both replication and checkpoint responses. We have previously identified four novel fission yeast mutants of rad4+(TopBP1) to explore how Rad4(TopBP1), a single protein, can play multiple roles in genomic integrity maintenance. Among the four novel mutants, rad4-c17(TopBP1) is a thermosensitive mutant. Here, we characterized rad4-c17(TopBP1) and identified a rad4-c17(TopBP1) allele specific suppressor named srr2+ (suppressor of Rad4(TopBP1) R2 domain). srr2+ has previously been identified as an environmental stress-responsive gene (GenBank accession number AL049644.1, locus spcc191.01). srr2+ null cells are sensitive to hydroxyurea (HU) at elevated temperatures. Deletion of srr2+ in rad4-c17(TopBP1) exacerbates the HU sensitivity of the mutant. Overexpression of srr2+ suppresses the rad4-c17(TopBP1) mutant sensitivity to temperature and HU and restores the compromised ability of rad4-c17(TopBP1) to activating Cds1 kinase in response to HU treatment. Furthermore, stress-activated MAPK, Spc1 (also known as StyI or Phh1), induces the expression and phosphorylation of the Srr2 protein. Significantly, environmental stress induces co-precipitation of Srr2 protein with Rad4(TopBP1), and the co-precipitation is compromised in the rad4-c17(TopBP1) mutant. These results have led us to propose a model; Rad4(TopBP1) exists in a large protein complex to coordinate genomic perturbations with checkpoint responses to maintain genomic integrity. In addition, when cells experience environmental stress, Rad4(TopBP1) associates with Srr2, an Spc1 MAPK-responsive protein, to survive the stress, potentially by providing a link of the Spc1 MAPK response to checkpoint responses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M609282200 | DOI Listing |
J Nurs Adm
December 2024
Author Affiliations: Research Associate (Dr Keys), The Center for Health Design, Concord, California; National Senior Director (Dr Fineout-Overholt), Evidence-Based Practice and Implementation Science, at Ascension in St. Louis, MO.
Objective: Relationships among coworker and patient visibility, reactions to physical work environment, and work stress in ICU nurses are explored.
Background: Millions of dollars are invested annually in the building or remodeling of ICUs, yet there is a gap in understanding relationships between the physical layout of nursing units and work stress.
Methods: Using a cross-sectional, correlational, exploratory, predictive design, relationships among variables were studied in a diverse sample of ICU nurses.
Proc Natl Acad Sci U S A
January 2025
Institut Langevin, École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, Université Paris Sciences & Lettres, CNRS, Paris 7587, France.
Understanding the dynamic response of granular shear zones under cyclic loading is fundamental to elucidating the mechanisms triggering earthquake-induced landslides, with implications for broader fields such as seismology and granular physics. Existing prediction methods struggle to accurately predict many experimental and in situ landslide observations due to inadequate consideration of the underlying physical mechanisms. The mechanisms that influence landslide dynamic triggering, a transition from static (or extremely slow creeping) to rapid runout, remain elusive.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China.
Rotation of the bacterial flagellum, the first identified biological rotary machine, is driven by its stator units. Knowledge gained about the function of stator units has increasingly led to studies of rotary complexes in different cellular pathways. Here, we report that a tetrameric PilZ family protein, FlgX, is a structural component underneath the stator units in the flagellar motor of .
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
While iron (Fe) is essential for life and plays important roles for almost all growth related processes, it can trigger cell death in both animals and plants. However, the underlying mechanisms for Fe-induced cell death in plants remain largely unknown. S-nitrosoglutathione reductase (GSNOR) has previously been reported to regulate nitric oxide homeostasis to prevent Fe-induced cell death within root meristems.
View Article and Find Full Text PDFPLoS Genet
January 2025
Génétique Quantitative et Evolution - Le Moulon, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France.
Elucidating the genetic components of plant genotype-by-environment interactions is of key importance in the context of increasing climatic instability, diversification of agricultural practices and pest pressure due to phytosanitary treatment limitations. The genotypic response to environmental stresses can be investigated through multi-environment trials (METs). However, genome-wide association studies (GWAS) of MET data are significantly more complex than that of single environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!