Theoretical study of BOLD response to sinusoidal input.

Conf Proc IEEE Eng Med Biol Soc

Appl. Sci. & Technol. Graduate Group, California Univ., Berkeley, CA, USA.

Published: May 2007

This is a theoretical study of a compelling model of blood oxygen level-dependent (BOLD) response dynamics, measured in functional magnetic resonance imaging (fMRI). The novelty of this study involves the way the model is driven sinusoidally, in order to avoid onset and offset transients that pose difficulties in data analysis and interpretation. The driving frequency ranges over the natural time scales of the hemodynamic response (0.01-1 Hz), which also corresponds to the period in typical boxcar stimulus designs. At low stimulus amplitude, the predicted BOLD response is quasi-linear. The amplitude exhibits a mild peak near the modulation frequency 0.1 Hz, and falls rapidly for higher frequencies. The phase lag relative to the stimulus is a monotonically increasing function of the modulation frequency. These findings illustrate the dynamical nature of the BOLD response, and could be used to optimize experimental designs that admit sinusoidal modulation. Higher stimulus amplitude elicits nonlinear behavior characterized by a double peak during the positive deflection of the BOLD response. This finding is particularly interesting, because similar double peaks are seen frequently in BOLD data.

Download full-text PDF

Source
http://dx.doi.org/10.1109/IEMBS.2004.1403244DOI Listing

Publication Analysis

Top Keywords

bold response
20
theoretical study
8
stimulus amplitude
8
modulation frequency
8
bold
6
response
6
study bold
4
response sinusoidal
4
sinusoidal input
4
input theoretical
4

Similar Publications

Background: Primary cilia are solitary membrane-bound organelles emanating from the apical surface of most mammalian cells. They serve as sensory organelles sampling the extracellular environment and reprogramming the transcriptional machinery in response to changes in fluid flow. Ciliopathies, a group of genetic disorders characterized by disrupted cilia structure and/or function, share common phenotypes such as vascular dysfunction and cognitive impairment.

View Article and Find Full Text PDF

Concurrent optoacoustic tomography and magnetic resonance imaging of resting-state functional connectivity in the mouse brain.

Nat Commun

December 2024

Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.

Resting-state functional connectivity (rsFC) has been essential to elucidate the intricacy of brain organization, further revealing clinical biomarkers of neurological disorders. Although functional magnetic resonance imaging (fMRI) remains a cornerstone in the field of rsFC recordings, its interpretation is often hindered by the convoluted physiological origin of the blood-oxygen-level-dependent (BOLD) contrast affected by multiple factors. Here, we capitalize on the unique concurrent multiparametric hemodynamic recordings of a hybrid magnetic resonance optoacoustic tomography platform to comprehensively characterize rsFC in female mice.

View Article and Find Full Text PDF

Background: Adolescent alcohol use is the norm, but only some develop a substance use disorder. The increased risk might reflect heightened mesocorticolimbic responses to reward-related cues but results published to date have been inconsistent.

Methods: Young social drinkers (age 18.

View Article and Find Full Text PDF

Individuals with borderline personality disorder (BPD) often hold pervasive and negative self-views and experience feelings of low connectedness toward others despite effective treatment. This study aimed to identify neural and affective mechanisms of identity disturbance in BPD that contribute to difficulties in relating to others. Participants diagnosed with BPD ( = 34) and nonclinical controls (NCC; = 35) completed a within-subject social feedback task inside a magnetic resonance imaging scanner.

View Article and Find Full Text PDF

In functional magnetic resonance imaging, the hemodynamic response function (HRF) is a stereotypical response to local changes in cerebral hemodynamics and oxygen metabolism due to briefly (< 4 s) evoked neural activity. Accordingly, the HRF is often used as an impulse response with the assumption of linearity in data analysis. In cognitive aging studies, it has been very common to interpret differences in brain activation as age-related changes in neural activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!