Bioassays involve multi-stage sample processing and fluidic handling, which are generally labor-intensive and time-consuming. Using microfluidic technology to integrate and automate all these steps in a single chip device is highly desirable in many practical applications such as clinical diagnostic and in-field environmental testing. We have developed self-contained and fully integrated biochip systems for immunoassay and DNA analysis. These microfluidic biochip devices can perform detection of multiple bioagents (including antigens and DNA) using electrochemical detection methods. Microfluidic mixer, valves, pumps, channels, chambers, and Combimatrix microelectrode array are integrated to perform parallel immunoassays to detect infectious particles (viruses and bacteria) from complex biological samples in a single, fully automated biochip device. All microfluidic components use very simple and inexpensive approaches in order to reduce chip complexity. Back-end detection is accomplished using an enzyme-based electrochemical detection method that has many advantages including high sensitivity ( approximately fM) and simple apparatus. The sensor is a miniaturized array of individually addressable microelectrodes controlled by active CMOS circuitry. Pathogenic bacteria and DNA detections are both demonstrated. The devices with capabilities of on-chip sample processing and detection provide a cost-effective solution to direct sample-to-answer biological analysis for point-of-care genetic analysis, disease diagnosis, and in-field bio-threat detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/IEMBS.2004.1404507 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China.
Purpose: To investigate potential modes of programmed cell death in the lens epithelial cells (LECs) of patients with early age-related cortical cataract (ARCC) and to explore early-stage intervention strategies.
Methods: Anterior lens capsules were collected from early ARCC patients for comprehensive analysis. Ultrastructural examination of LECs was performed using transmission electron microscopy.
Acta Dermatovenerol Croat
November 2024
Prof. Ana Bakija-Konsuo, MD, PhD, Clinic for Dermatovenerology CUTIS, Vukovarska 22, Dubrovnik, Croatia;
We report the case of an 18-month-old boy who developed a phototoxic skin reaction to terbinafine on his scalp, ears, and face in the form of disseminated erythematous plaques, which resembled subacute lupus erythematosus (SCLE) in their clinical presentation. Skin changes appeared a short time after the boy was exposed to sunlight during the period of time when he was treated with oral terbinafine due to Microsporum canis fungal scalp infection. Tinea capitis is a common dermatophyte infection primarily affecting prepubertal children (1).
View Article and Find Full Text PDFJ Helminthol
January 2025
Hacettepe University, Faculty of Medicine, Department of Radiology, Ankara, Turkiye.
Cystic Echinococcosis (CE) is a zoonotic disease caused by sensu lato. Diagnosing CE primarily relies on imaging techniques, and there is a crucial need for an objective laboratory test to enhance the diagnostic process. Today, cell-free DNAs (cfDNAs) have gained importance regarding their biomarker potential.
View Article and Find Full Text PDFExp Hematol Oncol
January 2025
Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
Background: Radiotherapy is the primary treatment modality for most head and neck cancers (HNCs). Despite the addition of chemotherapy to radiotherapy to enhance its tumoricidal effects, almost a third of HNC patients suffer from locoregional relapses. Salvage therapy options for such recurrences are limited and often suboptimal, partly owing to divergent tumor and microenvironmental factors underpinning radioresistance.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Swedish Board Member of General Surgery, Kurdistan Higher Council of Medical Specialties, Erbil, Iraq.
The rising global incidence of syphilis underscores the risk of transmission through blood transfusions. Treponema pallidum, the pathogen responsible for syphilis, represents a major public health challenge. Accurate detection is essential for controlling the disease, particularly in asymptomatic blood donors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!