Cardiac volume can be estimated by a conductance catheter system. Both blood and myocardium are conductive, but only the blood conductance is desired. Therefore, the parallel myocardium contribution should be removed from the total measured conductance. Several methods have been developed to estimate the contribution from myocardium, and they only determine a single steady state value for the parallel contribution. Besides, myocardium was treated as purely resistive or mainly capacitive when estimating the myocardial contribution. We question these assumptions and propose that the myocardium is both resistive and capacitive, and its contribution changes during a single cardiac cycle. In vivo magnitude and phase experiments were performed in mice to confirm this hypothesis.

Download full-text PDF

Source
http://dx.doi.org/10.1109/IEMBS.2004.1404032DOI Listing

Publication Analysis

Top Keywords

myocardial contribution
8
vivo magnitude
8
magnitude phase
8
contribution myocardium
8
resistive capacitive
8
contribution
6
myocardium
5
evidence time-varying
4
time-varying myocardial
4
contribution vivo
4

Similar Publications

Myocyte disarray and fibrosis are underlying pathologies of hypertrophic cardiomyopathy (HCM) caused by genetic mutations. However, the extent of their contributions has not been extensively evaluated. In this study, we investigated the effects of genetic mutations on myofiber function and fibrosis patterns in HCM.

View Article and Find Full Text PDF

Purpose: We sought to investigate the expression of MALAT1, plasma brain natriuretic peptide, and Tei index in sepsis-induced myocardial injury.

Methods: The current retrospective analysis focused on 146 sepsis patients admitted to our hospital from February 2021 to March 2023. Based on the presence or absence of myocardial injury, the patients were divided into two groups: the sepsis group (n = 80) and the sepsis-induced myocardial injury group (n = 66).

View Article and Find Full Text PDF

The advancements in cardiovascular imaging over the past two decades have been significant. The miniaturization of ultrasound devices has greatly contributed to their widespread adoption in operating rooms and intensive care units. The integration of AI-enabled tools has further transformed the field by simplifying echocardiographic evaluations and enhancing the reproducibility of hemodynamic measurements, even for less experienced operators.

View Article and Find Full Text PDF

TRADD-mediated pyroptosis contributes to diabetic cardiomyopathy.

Acta Pharmacol Sin

January 2025

Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, China.

Regulated cell death like pyroptosis is one vital cause of diabetic cardiomyopathy (DCM), which eventually leads to heart failure. Tumor necrosis factor (TNF) receptor-associated death domain protein (TRADD) is an adapter protein with multiple functions that participates in the pathophysiological progress of different cardiovascular disorders via regulating regulated cell death. Studies have shown that TRADD combines with receptor-interacting protein kinase 3 (RIPK3) and facilitates its activation, thereby mediating TNF-induced necroptosis.

View Article and Find Full Text PDF

Background: Optimised use of kidney function information might improve cardiac risk prediction in noncardiac surgery.

Methods: In 35,815 patients from the VISION cohort study and 9219 patients from the POISE-2 trial who were ≥45 yr old and underwent nonurgent inpatient noncardiac surgery, we examined (by age and sex) the association between continuous nonlinear preoperative estimated glomerular filtration rate (eGFR) and the composite of myocardial injury after noncardiac surgery, nonfatal cardiac arrest, or death owing to a cardiac cause within 30 days after surgery. We estimated contributions of predictive information, C-statistic, and net benefit from eGFR and other common patient and surgical characteristics to large multivariable models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!