This paper presents an input classification scheme used in an evidence-based dynamic recurrent neuro-fuzzy system for prognosis in rehabilitation. All external variables which may have an effect on the outcome of the rehabilitative process are classified into facts, contexts and interventions. Their effects on patients' physical and/or physiological states, which are estimated based on available evidence, are represented by fuzzy rules and/or non-linear models of physiologic processes. The outcomes of rehabilitation are defined as functions of those states.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/IEMBS.2004.1403901 | DOI Listing |
Nat Commun
January 2025
Neuromorphic Computing Lab, Intel, Santa Clara, CA, USA.
Reservoir computing advances the intriguing idea that a nonlinear recurrent neural circuit-the reservoir-can encode spatio-temporal input signals to enable efficient ways to perform tasks like classification or regression. However, recently the idea of a monolithic reservoir network that simultaneously buffers input signals and expands them into nonlinear features has been challenged. A representation scheme in which memory buffer and expansion into higher-order polynomial features can be configured separately has been shown to significantly outperform traditional reservoir computing in prediction of multivariate time-series.
View Article and Find Full Text PDFAccid Anal Prev
January 2025
Department of Computer Engineering, Hongik University, Seoul, 04066, Republic of Korea. Electronic address:
Automated Vehicles (AVs) are on the cusp of commercialization, prompting global governments to organize the forthcoming mobility phase. However, the advancement of technology alone cannot guarantee the successful commercialization of AVs without insights into the accidents on the read roads where Human-driven Vehicles (HV) coexist. To address such an issue, The New Car Assessment Program (NCAP) is currently in progress, and scenario-based approaches have been spotlighted.
View Article and Find Full Text PDFNeural Netw
January 2025
Department of Data Science and Artificial Intelligence, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region; Department of Computing, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region. Electronic address:
In this work, we propose a Fine-grained Hemispheric Asymmetry Network (FG-HANet), an end-to-end deep learning model that leverages hemispheric asymmetry features within 2-Hz narrow frequency bands for accurate and interpretable emotion classification over raw EEG data. In particular, the FG-HANet extracts features not only from original inputs but also from their mirrored versions, and applies Finite Impulse Response (FIR) filters at a granularity as fine as 2-Hz to acquire fine-grained spectral information. Furthermore, to guarantee sufficient attention to hemispheric asymmetry features, we tailor a three-stage training pipeline for the FG-HANet to further boost its performance.
View Article and Find Full Text PDFPLoS One
January 2025
Real Estate Research Center, Nanjing Agricultural University, Nanjing, China.
This paper aims to reveal the changing characteristics of the contribution rates of different production factors in China since the reform and opening up from two dimensions: stage and space. The study used national data from 1978 to 2021 and provincial data from 2000 to 2020, combined with methods such as C-D production function and spatial econometrics for analysis. Research has found that: (1) In terms of stage characteristics, during the structural adjustment stage (1978-1998), economic growth mainly relies on capital and labor input, and the contribution rate of land factors gradually decreases.
View Article and Find Full Text PDFBMC Med Inform Decis Mak
January 2025
Institute of Mathematical Sciences Centre for Health Analytics and Modelling (CHaM), Strathmore University, Nairobi, Kenya.
Background: Measures of diagnostic test accuracy provide evidence of how well a test correctly identifies or rules-out disease. Commonly used diagnostic accuracy measures (DAMs) include sensitivity and specificity, predictive values, likelihood ratios, area under the receiver operator characteristic curve (AUROC), area under precision-recall curves (AUPRC), diagnostic effectiveness (accuracy), disease prevalence, and diagnostic odds ratio (DOR) etc. Most available analysis tools perform accuracy testing for a single diagnostic test using summarized data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!