We suggested and experimentally confirmed the effective method of internal optical loss reduction by high order mode suppression in a separate confinement quantum well laser heterostructure with asymmetric ultra thick waveguide. Manufacturing of InGaAs/GaAs/AlGaAs laser heterostructure with a 1.7 microm-thick asymmetric waveguide allowed attaining super low value of internal optical loss alphai=0.34 cm-1 preserving high efficiency and fundamental transverse mode operation. Record-high 16 W continuous wave (CW) and 145 W pulse room temperature front facet output optical power and 74% wallplug efficiency were attained in 100-microm-aperture 1.06-microm-emitting laser diodes with 3 mm cavity length.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2006.10.051DOI Listing

Publication Analysis

Top Keywords

laser diodes
8
quantum well
8
internal optical
8
optical loss
8
laser heterostructure
8
high power
4
power 16w
4
16w pulse
4
pulse 145w
4
laser
4

Similar Publications

All-inorganic perovskite materials have been widely used in various devices, including lasers, light-emitting diodes (LEDs), and solar cells, due to their exceptional optoelectronic properties. Devices utilizing high-quality single crystals are anticipated to achieve significantly enhanced performance. In this work, we present a high-performance vertical cavity surface emitting laser (VCSEL) based on a single-crystal CsPbBr microplatelet, fabricated through a simple solution process and sandwiched between two distributed Bragg reflector (DBRs).

View Article and Find Full Text PDF

Remote epitaxial crystalline perovskites for ultrahigh-resolution micro-LED displays.

Nat Nanotechnol

January 2025

Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China.

The miniaturization of light-emitting diodes (LEDs) is pivotal in ultrahigh-resolution displays. Metal-halide perovskites promise efficient light emission, long-range carrier transport and scalable manufacturing for bright microscale LED (micro-LED) displays. However, thin-film perovskites with inhomogeneous spatial distribution of light emission and unstable surface under lithography are incompatible with the micro-LED devices.

View Article and Find Full Text PDF

An ML-Enhanced Laser-Based Methane Slip Sensor Using Wavelength Modulation Spectroscopy.

ACS Sens

January 2025

Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, British Columbia V6T 1Z4, Canada.

Natural gas (NG) is a promising alternative to diesel for sustainable transport, potentially reducing GHG and air quality emissions significantly. However, the GHG benefits hinge on managing methane slip, the unburned methane in the exhaust of NG engines, which carries a significant global warming potential. The CH slip from NG engines is highly dependent on engine type and operation, and effective greenhouse gas emission mitigation requires that the actual operation of real-world engines is monitored.

View Article and Find Full Text PDF

Metal halide perovskites (MHPs) have been developed rapidly for application in light-emitting diodes (LEDs), lasers, solar cells, photodetectors and other fields in recent years due to their excellent photoelectronic properties, and they have attracted the attention of many researchers. Perovskite LEDs (PeLEDs) show great promise for next-generation lighting and display technologies, and the external quantum efficiency (EQE) values of polycrystalline thin-film PeLEDs exceed 20%, which is undoubtedly a big breakthrough in lighting and display fields. However, the toxicity and instabilities of lead-based MHPs remain major obstacles limiting their further commercial applications.

View Article and Find Full Text PDF

This study aimed to assess the effectiveness of repeated subgingival instrumentation combined with 980 nm diode laser decontamination in the non-surgical treatment of deep periodontal pockets. A total of 40 otherwise healthy patients with generalized periodontitis, encompassing 1,168 sites with deep pockets, were included and baseline PPD, bleeding on probing (BOP), gingival recession (REC), clinical attachment level (CAL), and plaque index (PI) were recorded. Each patient underwent non-surgical laser-assisted periodontal therapy and was enrolled in a maintenance program with three-month recall visits during the first year of follow-up.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!