Objective: Transdifferentiation of bone marrow cells (BMC) into insulin-producing cells might provide a new cellular therapy for type I diabetes, but its existence is controversial. Our aim was to determine if those cells could transdifferentiate, even at low frequency, into insulin-producing cells, in testing optimized experimental conditions.

Methods: We grafted mice with total BMC, genetically labeled either ubiquitarily, or with a marker conditionally expressed under the control of the insulin beta-cell specific promoter. We treated some of the recipients with an agent toxic to beta-cells (streptozotocin) and with cytokines stem cell factor (SCF) and granulocyte-colony stimulating factor (G-CSF).

Results: The contribution of grafted cells could be detected neither for natural turnover (n=6), nor for beta-cell regeneration after pancreatic lesion (n=7), 90 days post-transplantation. Cytokine mobilization of BMC in the blood stream, reported to favor their transdifferentiation into cardiac and neural cells, had never been tested before for beta-cell generation. Here, we showed that injection of SCF and G-CSF did not lead to a detectable level of transdifferentiation (n=7).

Conclusions: We conclude that BMC cannot spontaneously transdifferentiate into insulin-producing cells in vivo, even after beta-cell lesion and mobilization induced by cytokines. Interestingly, however, treatment by cytokines may have beneficial indirect effects on STZ-induced hyperglycaemia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.diabet.2006.11.002DOI Listing

Publication Analysis

Top Keywords

insulin-producing cells
16
bone marrow
12
marrow cells
12
cells
10
cytokine mobilization
8
pancreatic lesion
8
transdifferentiation bone
8
mobilization bone
4
cells pancreatic
4
lesion improve
4

Similar Publications

Circulating T Cell Subsets in Type 1 Diabetes.

Cells

January 2025

Unidad de Investigación Médica en Inmunología, de la UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico.

Type 1 diabetes (T1D) is a complex disease driven by the immune system attacking the insulin-producing beta cells in the pancreas. Understanding the role of different T cell subpopulations in the development and progression of T1D is crucial. By employing flow cytometry to compare the characteristics of T cells, we can pinpoint potential indicators of treatment response or therapeutic inefficacy.

View Article and Find Full Text PDF

Type 1 diabetes mellitus is an autoimmune condition characterized by the destruction of pancreatic β-cells, necessitating insulin therapy to prevent life-threatening complications such as diabetic ketoacidosis. Despite advancements in glucose monitoring and pharmacological treatments, managing this disease remains challenging, often leading to long-term complications and psychological burdens, including diabetes distress. Advanced treatment options, such as whole-pancreas transplantation and islet transplantation, aim to restore insulin production and improve glucose control in selected patients with diabetes.

View Article and Find Full Text PDF

Biotechnology Revolution Shaping the Future of Diabetes Management.

Biomolecules

December 2024

Discipline of Microbiology, Department XIV Microbiology, University of Medicine and Pharmacy from Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania.

Diabetes mellitus (DM) has a millennia-long history, with early references dating back to ancient Egypt and India. However, it was not until the 20th century that the connection between diabetes and insulin was fully understood. The sequencing of insulin in the 1950s initiated the convergence of biotechnology and diabetes management, leading to the development of recombinant human insulin in 1982.

View Article and Find Full Text PDF

ISG15 increases the apoptosis of β cells in type 1 diabetes.

Cell Signal

January 2025

Department of Endocrinology, The Third Xiangya Hospital, Central South University, 410007 Changsha, Hunan, China. Electronic address:

Type 1 diabetes (T1D) is an autoimmune disease characterized by hyperglycemia caused by the destruction of insulin-producing β cells. Viral infection is an important environmental factor which is associated with the islet autoimmunity in genetically susceptible individuals. Loss of β-cells and triggering of insulitis following viral infection could result from several non-exclusive mechanisms.

View Article and Find Full Text PDF

Type 1 Diabetes Mellitus (T1D) is an autoimmune disease caused by unremitting immune attack on pancreas insulin-producing beta cells. Persistence of the autoimmune response is mediated by TCF1+ Ly108+ progenitor CD8+ T (T) cells, a stem-like population that gives rise to exhausted effectors with limited cytolytic function in chronic virus infection and cancer. What paradoxically drives T conversion to highly cytolytic effectors in T1D, however, remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!