The effect of static and dynamic spatially structured disturbances on a locally dispersing population.

J Theor Biol

Department of Mathematics and Statistics, University of Maine, 333 Neville Hall, Orono, ME 04469-5752, USA.

Published: May 2007

Previous models of locally dispersing populations have shown that in the presence of spatially structured fixed habitat heterogeneity, increasing local spatial autocorrelation in habitat generally has a beneficial effect on such populations, increasing equilibrium population density. It has also been shown that with large-scale disturbance events which simultaneously affect contiguous blocks of sites, increasing spatial autocorrelation in the disturbances has a harmful effect, decreasing equilibrium population density. Here, spatial population models are developed which include both of these spatially structured exogenous influences, to determine how they interact with each other and with the endogenously generated spatial structure produced by the population dynamics. The models show that when habitat is fragmented and disturbance occurs at large spatial scales, the population cannot persist no matter how large its birth rate, an effect not seen in previous simpler models of this type. The behavior of the model is also explored when the local autocorrelation of habitat heterogeneity and disturbance events are equal, i.e. the two effects occur at the same spatial scale. When this scale parameter is very small, habitat fragmentation prevents the population from persisting because sites attempting to reproduce will drop most of their offspring on unsuitable sites; when the parameter is very large, large-scale disturbance events drive the population to extinction. Population levels reach their maximum at intermediate values of the scale parameter, and the critical values in the model show that the population will persist most easily at these intermediate scales of spatial influences. The models are investigated via spatially explicit stochastic simulations, traditional (infinite-dispersal) and improved (local-dispersal) mean-field approximations, and pair approximations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtbi.2006.12.024DOI Listing

Publication Analysis

Top Keywords

spatially structured
12
disturbance events
12
population
10
locally dispersing
8
habitat heterogeneity
8
spatial autocorrelation
8
autocorrelation habitat
8
equilibrium population
8
population density
8
large-scale disturbance
8

Similar Publications

VcaNet: Vision Transformer with fusion channel and spatial attention module for 3D brain tumor segmentation.

Comput Biol Med

January 2025

College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, 321004, China; Zhejiang Institute of Optoelectronics, Jinhua, 321004, China. Electronic address:

Accurate segmentation of brain tumors from MRI scans is a critical task in medical image analysis, yet it remains challenging due to the complex and variable nature of tumor shapes and sizes. Traditional convolutional neural networks (CNNs), while effective for local feature extraction, struggle to capture long-range dependencies crucial for 3D medical image analysis. To address these limitations, this paper presents VcaNet, a novel architecture that integrates a Vision Transformer (ViT) with a fusion channel and spatial attention module (CBAM), aimed at enhancing 3D brain tumor segmentation.

View Article and Find Full Text PDF

Active transportation is associated with lower obesity risk: generalized structural equations model applied to physical activity.

Cad Saude Publica

January 2025

Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Córdoba, Córdoba, Argentina.

This study aimed to identify latent (unobservable) dimensions representing specific physical activity-related behaviors and explore their potential effects on obesity burden and spatial distribution in Colombia. A cross-sectional study (n = 9,658) was conducted based on the Colombian National Survey of Nutritional Status. A generalized structural equations model was proposed, combining exposure and measurement models to define a disease model.

View Article and Find Full Text PDF

The Black Sea is affected by numerous anthropogenic pressures, such as eutrophication and pollution through coastal and river discharges, fisheries overexploitation, species invasions, and the impacts of climate change. Growing concerns regarding the cumulative effects of these pressures have necessitated the need for an ecosystem approach to assessing the state of this basin. In recent years, the European Commission-JRC has developed a scientific and modelling tool, the Blue2 Modelling Framework with the aim of exploring the consequences of EU management and policy options on marine ecosystems.

View Article and Find Full Text PDF

Glucanases are widely applied in industrial applications such as brewing, biomass conversion, food, and animal feed. Glucanases catalyze the hydrolysis of glucan to produce the sugar hemiacetal through hydrolytic cleavage of glycosidic bonds. Current study aimed to investigate structural insights of a glucanase from Clostridium perfringens through blind molecular docking, site-specific molecular docking, molecular dynamics (MD) simulation, and binding energy calculation.

View Article and Find Full Text PDF

Rocky desertification (RD) is a severe phenomenon in karst areas, often referred to as "ecological cancer." However, studies on RD rarely include comparative analysis of different man-land relationship areas. This lack of analysis leads to difficulties in preventing and controlling RD in local areas with complex man-land relationships.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!