A portable forensic genetic analysis system consisting of a microfluidic device for amplification and separation of short tandem repeat (STR) fragments as well as an instrument for chip operation and four-color fluorescence detection has been developed. The microdevice performs polymerase chain reaction (PCR) in a 160-nL chamber and capillary electrophoresis (CE) in a 7-cm-long separation channel. The instrumental design integrates PCR thermal cycling, electrophoretic separation, pneumatic valve fluidic control, and four-color laser excited fluorescence detection. A quadruplex Y-chromosome STR typing system consisting of amelogenin and three Y STR loci (DYS390, DYS393, DYS439) was developed and used for validation studies. The multiplex amplification of these 4 loci with 35 PCR cycles followed by CE separation and 4-color fluorescence detection was completed in 1.5 h. All the amplicons can be detected with a limit of detection of 20 copies of male standard DNA in the reactor. Real-world forensic analyses of oral swab and human bone extracts from case evidence were also successfully performed. Mixture analysis demonstrated that a balanced profile can be obtained even at a male-to-female template ratio of 1:10. The successful development and operation of this portable PCR-CE system establishes the feasibility of rapid point-of-analysis DNA typing of forensic casework, of mass disaster samples or of individuals at a security checkpoint.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac061961k | DOI Listing |
J Phys Chem A
January 2025
Key Lab of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China.
Plasmon resonance plays an important role in improving the detection of biomolecules, and it is one of the focuses of research to use metal plasmon resonance to achieve fluorescence enhancement and to improve detection sensitivity. However, the problems of nondynamic tuning and fluorescence quenching of metal plasmon resonance need to be solved. Graphene surface plasmon resonance can be dynamically controlled, and the graphene adsorption of fluorescent molecules can avoid fluorescence quenching and greatly improve the fluorescence emission intensity.
View Article and Find Full Text PDFAnal Methods
January 2025
School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China.
A novel fluorescent probe DTP, based on fluorine-silicon complexation, extends emission to 590 nm and achieves a 5 minutes response time. It shows high selectivity and a 0.98 μM detection limit for fluoride ions, with successful bioimaging application in living cells.
View Article and Find Full Text PDFThis study characterizes a fluorescent -tdTomato neuronal reporter mouse line with strong labeling of axons throughout the optic nerve, of retinal ganglion cell (RGC) soma in the ganglion cell layer (GCL), and of RGC dendrites in the inner plexiform layer (IPL). The model facilitated assessment of RGC loss in models of degeneration and of RGC detection in mixed neural/glial cultures. The tdTomato signal showed strong overlap with >98% cells immunolabeled with RGC markers RBPMS or BRN3A, consistent with the ubiquitous presence of the vesicular glutamate transporter 2 (VGUT2, SLC17A6) in all RGC subtypes.
View Article and Find Full Text PDFRedox Biochem Chem
December 2024
Department of Biophysics, Medical College of Wisconsin, Milwaukee, United States.
Peroxynitrite (ONOO/ONOOH) is a short-lived but highly reactive species that is formed in the diffusion-controlled reaction between nitric oxide and the superoxide radical anion. It can oxidize certain biomolecules and has been considered as a key cellular oxidant formed under various pathophysiological conditions. It is crucial to selectively detect and quantify ONOO to determine its role in biological processes.
View Article and Find Full Text PDFMedComm (2020)
January 2025
The increased prevalence of methicillin-resistant (MRSA) and its biofilms poses a great threat to human health. Especially, -related osteomyelitis was hardly cured even by conventional antibiotics combined with surgical treatment. The development of novel structural antibiotics is urgently needed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!