Using protein fusion partners for in vitro translation may increase solubility, assist in purification, or allow detection of small proteins and peptides. Here we show that the molar yield of peptide in a batch reaction may be maximized by optimizing the length of the translated product, which is composed of the fusion partner plus the peptide. Using truncated versions of GFP as a series of fusion partners, the molar yield increased approximately 3-fold as the length of the translated product was reduced from 250 to 100 amino acids. When the translated product was shortened below roughly 100 amino acids, molar yield fell as a result of proteolysis. This trend was verified using two fusion partners with different amino acid sequences. Furthermore, protease inhibitors were used to confirm that proteases were responsible for limiting accumulation of peptides below the optimal length.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bp060277o | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!