Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A mathematical model is presented for predicting the shear-induced decrease in live cells occurring over time during tangential flow filtration. The model uses a cell death rate constant (K) and considers the effects of flow rate, solution viability, and filtration system volumes and dimensions. Single pass and recycle capillary experiments with solutions of high (93%), medium (87%), and low (70%) viability were run, where the maximum laminar shear stress ranged from 10- 300 Pa, to validate the model and determine cell death rate constants. The K values for the suspended CHO cells used in this research ranged from 0.06 to 12.5 s-1. These K values increased with shear stress, as expected, and also as the solution viability decreased.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bp060183e | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!