The generation of reactive oxygen species (ROS) by plant cell suspension cultures, in response to the imposition of both biotic and abiotic stress, is well-documented. This study investigated the generation of hydrogen peroxide by hydrodynamically stressed cultures of Morinda citrifolia, over a 5-h period post-stress imposition. Suspensions were exposed to repeated passages through a syringe, under laminar flow conditions, corresponding to cumulative energy dissipation levels of approximately 3-6 J kg-1. Extracellular hydrogen peroxide was detected using a luminol-based chemiluminescence assay. The addition of exogenous hydrogen peroxide facilitated the detection of low levels of hydrogen peroxide in the presence of antioxidants. Immediately after shear exposure, there was evidence of significant antioxidative capacity in the sheared cell cultures, which potentially masked any oxidative burst (OB), but which decreased over the following 40 min. This antioxidative capacity was determined to derive from the shearing process. Trials in which ground cellular debris was added to control suspensions suggested that some of the antioxidative capacity observed in stressed suspensions was directly associated with debris generated by the shearing process. Using UV-vis spectrophotometry and HPLC, stress-related increases in the levels of phenolic compounds were detected in suspension filtrates. Under the stress conditions investigated, maximum hydrogen peroxide levels of 11.5 muM were observed, 5 h after shear exposure. This study emphasizes the importance of considering both oxidative and antioxidative capacities as part of a holistic approach to the determination of the OB in hydrodynamically stressed plant cell suspension cultures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bp0603006 | DOI Listing |
Mar Pollut Bull
January 2025
Suganthi Devadason Marine Research Institute, Tuticorin, Tamil Nadu, India; Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu, India.
This research investigated the relationship between microplastic accumulation and the sediment texture in seagrass meadows across the selected coastal regions of Tuticorin. Sixteen sediment samples were collected by SCUBA divers utilizing a stainless steel grab sampler. Findings indicate significantly elevated microplastic concentrations in seagrass sediments when compared to unvegetated areas.
View Article and Find Full Text PDFJ Esthet Restor Dent
January 2025
Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry Araçatuba, Sao Paulo, Brazil.
Purpose: To compare the color alteration, surface roughness and microhardness and cross-sectional microhardness of bovine enamel treated with at-home whitening strips and gels.
Materials And Methods: Sixty-six pigmented specimens (n = 11) were allocated to six groups: C-cotton wool moistened with distilled water for 1 h; SDS-sodium dithionite strip, for 1 h; HPS-6.5% hydrogen peroxide strip, for 1 h; CPS-20% carbamide peroxide strip, for 1 h; HPG-7.
Curr Microbiol
January 2025
Department of Horticulture, Agriculture Faculty of Aburaihan, University of Tehran, P.O. Box 11365/4117, Tehran, Iran.
This research was conducted to determine the relationship between plant defense responses and the extent of treatment applied to either the aerial parts or roots of the plant. The experimental treatments included different methods of application (spraying versus soil drenching), varying treatment areas (one-sixth, one-third, half, or all of the plant's aerial parts and roots) with SA, and infecting the plants with root-knot nematodes. Evaluation of plant growth and nematode pathogenicity indices in the greenhouse section, HO accumulation rate, and phenylalanine ammonia lyase enzyme activity (in aerial parts and roots) were carried out in biochemical experiments.
View Article and Find Full Text PDFNat Commun
January 2025
Research Center for Solar Driven Carbon Neutrality, School of Physics Science and Technology, In-stitute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China.
Photo-oxidation of methane (CH) using hydrogen peroxide (HO) synthesized in situ from air and water under sunlight offers an attractive route for producing green methanol while storing intermittent solar energy. However, in commonly used aqueous-phase systems, photocatalysis efficiency is severely limited due to the ultralow availability of CH gas and HO intermediate at the flooded interface. Here, we report an atomically modified metal-organic framework (MOF) membrane nanoreactor that promotes direct CH photo-oxidation to methanol at the gas-solid interface in a reticular open framework.
View Article and Find Full Text PDFInt J Med Mushrooms
January 2025
College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, China; Collaborative Innovation Center of Food Production and Safety, Zhengzhou, Henan, China.
RVP, a water-soluble triple-helix galactoglucomannan, was successfully extracted from the fruiting body of Russula virescens using an alkali extraction method. Physicochemical properties analysis showed that the protein content of RVP was low (0.95%).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!