Eight papers were presented in this year's symposium "Advances in Biocatalysis" at the 232nd ACS National Meeting, accentuating the most recent development in biocatalysis. Researchers from both industry and academia are addressing several fundamental problems in biocatalysis, including the limited number of commercially available enzymes that can be provided in bulk quantities, the limited enzyme stability and activity in nonaqueous environments, and the permeability issue and cell localization problems in whole-cell systems. A trend that can be discerned from these eight talks is the infusion of new tools and technologies in addressing various challenges facing biocatalysis. Nanotechnology, bioinformatics, cellular membrane engineering and metabolic engineering (for engineering whole-cell catalysts), and protein engineering (to improve enzymes and create novel enzymes) are becoming more routinely used in research laboratories and are providing satisfactory solutions to the problems in biocatalysis. Significant progress in various aspects of biocatalysis from discovery to industrial applications was highlighted in this symposium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bp060358k | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
December 2024
Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China. Electronic address:
Trends Biochem Sci
January 2025
Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA. Electronic address:
Methods Enzymol
November 2024
Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, Bangor, United Kingdom; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada. Electronic address:
Microbial carboxylases and decarboxylases play important roles in the global carbon cycle and have many potential applications in biocatalysis and synthetic biology. The widespread family of reversible UbiD-like (de)carboxylases are of particular interest because these enzymes are active against a diverse range of substrates. Several characterized UbiD enzymes have been shown to catalyze reversible (de)carboxylation of aromatic and aliphatic substrates using the recently discovered prenylated FMN (prFMN) cofactor, which is produced by the associated family of UbiX FMN prenyltransferases.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia. Electronic address:
Plastic pollution presents a significant environmental problem contributing to increased CO emissions and persistently accumulation in ecosystems. Biobased polymers, like polyhydroxyalkanoates (PHAs), offer a part of a solution with their biodegradability and reduced carbon footprint. However, effective end-of-life strategies, such as controlled enzymatic depolymerization, are crucial for sustainability, relying on efficient PHA depolymerases (PHAases).
View Article and Find Full Text PDFJ Chem Phys
November 2024
School of Mathematics, Monash University, Clayton, Victoria 3800, Australia.
Enzyme-catalyzed reactions involve two distinct timescales: a short timescale on which enzymes bind to substrate molecules to produce bound complexes and a comparatively long timescale on which the molecules of the complex are transformed into products. The uptake of the substrate in these reactions is the rate at which the product is made on the long timescale. Models often only consider the uptake to reduce the number of chemical species that need to be modeled and to avoid explicitly treating multiple timescales.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!