The radiolabeling of the natural octapeptide CCK8, derivatized with a cysteine residue (Cys-Gly-CCK8), by using the metal fragment [99mTc(N)(PNP3)]2+ (PNP3 = N,N-bis(dimethoxypropylphosphinoethyl)methoxyethylamine) is reported. The [99mTc(N)(NS-Cys-Gly-CCK8)(PNP3)]+ complex was obtained according to two methods (one-step or two-step procedure) that gave the desired compound in high yield. The complex is stable in aqueous solution and in phosphate buffer. In vitro challenge experiments with an excess of cysteine and glutathione indicate that no transchelation reactions occur, confirming the high thermodynamic stability and kinetic inertness of this compound. Stability studies carried out in human and mouse serum, as well as in mouse liver homogenates, show that the radiolabeled compound remains intact for prolonged incubation at 37 degrees C. Binding properties give Kd (19.0 +/- 4.6 nmol/l) and Bmax (approximately 10(6) sites/cell) values in A431 cells overexpressing the CCK2-R. In vivo evaluation of the compound shows rapid and specific targeting to CCK2-R, a fourfold higher accumulation compared to nonreceptor expressing tumors.

Download full-text PDF

Source
http://dx.doi.org/10.1002/psc.834DOI Listing

Publication Analysis

Top Keywords

metal fragment
8
[tcnpnp]2+ metal
4
fragment labeled
4
labeled cholecystokinin-8
4
cholecystokinin-8 cck8
4
cck8 peptide
4
peptide cck-2
4
cck-2 receptors
4
receptors imaging
4
imaging vitro
4

Similar Publications

Two Alkaline Metal Borates: from Layer to Layer-Pillared Framework.

Inorg Chem

December 2024

MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.

Two borates, NaK[BO(OH)]·HO () and NaK[{BO}{BO}{BO(OH)}]·2HO () have been designed and made under solvothermal conditions. Compound exhibits a 2D fluctuant layer based on the [BO(OH)] clusters, containing two types of 9-membered ring (MR) channels and showing a four-connected sql topology net. By modifying the reactants and reaction temperature, compound was obtained from compound .

View Article and Find Full Text PDF

Microplastics (MPs) seriously threaten soil quality and crop health, particularly in agricultural systems using plastic mulch and sewage sludge, with their abundance being strongly influenced by soil properties such as texture, structure, and chemical content. Considering this, the present study assessed MP contamination in arid agricultural soils, focusing on their abundance, morphology, composition, and association with heavy metals to evaluate environmental risks. Soil samples were collected from ten plastic-mulched fields and a control site across a 50 sq.

View Article and Find Full Text PDF

Background: It is known that the heavy metals cobalt and chromium are associated with neurotoxicity. Chromium (Cr) and Cobalt (Co) are both components of metal-on-metal (MoM) implants which can be degraded/fragmented and released into the bloodstream. Neurofilament Light Chain (NfL) is a neuron-specific protein that increases in serum following axonal damage.

View Article and Find Full Text PDF

Osteochondral injuries in the knee are uncommon in the immature skeleton and are usually related to sporting activities. Fixation is required depending on the size and location of the fragment. The standard technique is open reduction and internal fixation with metal screws, which are removed in a second procedure after consolidation.

View Article and Find Full Text PDF

Gold nanoparticles (AuNPs) present with unique physicochemical features and potential for functionalization as anticancer agents. Three-dimensional spheroid models can be used to afford greater tissue representation due to their heterogeneous phenotype and complex molecular architecture. This study developed an A549 alveolar carcinoma spheroid model for cytotoxicity assessment and mechanistic evaluation of functionalized AuNPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!