Electron correlation: the many-body problem at the heart of chemistry.

J Comput Chem

Lehrstuhl für Theoretische Chemie, Institut für Physikalische Chemie, Universität Karlsruhe (TH), D-76128 Karlsruhe, Germany.

Published: June 2007

The physical interactions among electrons and nuclei, responsible for the chemistry of atoms and molecules, is well described by quantum mechanics and chemistry is therefore fully described by the solutions of the Schrödinger equation. In all but the simplest systems we must be content with approximate solutions, the principal difficulty being the treatment of the correlation between the motions of the many electrons, arising from their mutual repulsion. This article aims to provide a clear understanding of the physical concept of electron correlation and the modern methods used for its approximation. Using helium as a simple case study and beginning with an uncorrelated orbital picture of electronic motion, we first introduce Fermi correlation, arising from the symmetry requirements of the exact wave function, and then consider the Coulomb correlation arising from the mutual Coulomb repulsion between the electrons. Finally, we briefly discuss the general treatment of electron correlation in modern electronic-structure theory, focussing on the Hartree-Fock and coupled-cluster methods and addressing static and dynamical Coulomb correlation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcc.20581DOI Listing

Publication Analysis

Top Keywords

electron correlation
12
arising mutual
8
correlation modern
8
correlation arising
8
coulomb correlation
8
correlation
6
correlation many-body
4
many-body problem
4
problem heart
4
heart chemistry
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!