A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prediction of data stream parameters in atmospheric turbulent wireless communication links. | LitMetric

A unified approach for calculation of information data stream parameters in the atmospheric optical communication channel is presented based on irradiance fluctuations of optical wave propagation through turbulence and on a generalized Ricean K-parameter distribution. The effects of turbulence are described via the well-known Kolmogorov scheme of turbulent structure relaxation in terms of stochastic scintillation theory described by the gamma-gamma distribution along with measurements of the values of the refractive index structure parameter, C(n)(2). The relation between the Ricean parameter K and the signal scintillation parameter sigma(I)(2) is considered to develop a unified description of the corresponding probability density function (pdf) of signal fading within an atmospheric wireless communication link. Through the corresponding pdf and parameter K, signal data stream parameters such as the signal-to-noise ratio (SNR), bit error rate (BER), and capacity of the optical atmospheric channel (C) are estimated. Such an approach permits the reliable prediction of the effects of fading caused by different levels of turbulence and agrees with experimental data observed at different atmospheric levels, at the heights of both 100-200 m and above 1-2 km. It is shown that at heights of 100-200 m, effects of fading, caused by turbulence, occur much more frequently than those at the heights of 1-2 km. Data stream parameters such as channel capacity, SNR, and spectral efficiency become stronger at higher altitudes, while at the same time the BER becomes relatively negligible.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.46.000190DOI Listing

Publication Analysis

Top Keywords

data stream
16
stream parameters
16
parameters atmospheric
8
wireless communication
8
parameter signal
8
effects fading
8
fading caused
8
heights 100-200
8
atmospheric
5
prediction data
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!