One of the most puzzling features of respiration in insects is cyclic gas exchange (CGE, the extreme form of discontinuous gas exchange-cycles, DGC), a periodic respiratory pattern that appeared independently several times in the evolution of arthropods. Although it is a striking feature of insects and some non-insect species, to date there is no clear knowledge of how widespread it is, or its adaptive significance. Here we show for the first time that a cricket (Cratomelus armatus) from the Stenopelmatidae family exhibits CGE. C. armatus shows a conspicuous, convective O-phase, with significantly repeatable ventilatory period and O-phase duration (intraclass correlation coefficients of 0.51 and 0.74, respectively). Also, C. armatus exhibits high variation in the CGE patterns, ranging from continuous to highly periodic records, sometimes including the classic F-phase. No record went to zero and we found significant (inverse) effects of ambient temperature on O-phase duration but not on the ventilatory period. Average VCO2 and O-phase amplitude (i.e. mean VCO2 of the peaks) increased with temperature whereas the amplitude of the interburst did not change significantly with ambient temperature. C. armatus is a species that lives below ground in humid forests, so our results support the chthonic-hygric hypothesis (i.e. facilitation of gas exchange under hypoxic and hypercapnic conditions, minimizing evaporative water loss), although this assertion needs to be confirmed statistically by a strong inference approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.001966 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!