Previous work from our laboratory and others has established that Ste-20-related proline-alanine-rich kinase (SPAK/PASK) is central to the regulation of NKCC1 function. With no lysine (K) kinase (WNK4) has also been implicated in the regulation of NKCC1 activity through upstream activation of SPAK. Because previous studies from our laboratory also demonstrated a protein-protein interaction between SPAK and apoptosis-associated tyrosine kinase (AATYK), we explore here the possibility that AATYK is another component of the regulation of NKCC1. Heterologous expression of AATYK1 in NKCC1-injected Xenopus laevis oocytes markedly inhibited cotransporter activity under isosmotic conditions. Interestingly, mutation of key residues in the catalytic domain of AATYK1 revealed that the kinase activity does not play a role in the suppression of NKCC1 function. However, mutagenesis of the two SPAK-binding motifs in AATYK1 completely abrogated this effect. As protein phosphatase 1 (PP1) also plays a central role in the dephosphorylation and inactivation of NKCC1, we investigated the possibility that AATYK1 interacts with the phosphatase. We identified a PP1 docking motif in AATYK1 and demonstrated interaction using yeast-2-hybrid analysis. Mutation of a key valine residue (V1175) within this motif prevented protein-protein interaction. Furthermore, the physical interaction between PP1 and AATYK was required for inhibition of NKCC1 activity in Xenopus laevis oocytes. Taken together, our data are consistent with AATYK1 indirectly inhibiting the SPAK/WNK4 activation of the cotransporter by scaffolding an inhibitory phosphatase in proximity to a stimulatory kinase.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.00580.2006DOI Listing

Publication Analysis

Top Keywords

regulation nkcc1
12
apoptosis-associated tyrosine
8
tyrosine kinase
8
protein phosphatase
8
nkcc1 function
8
nkcc1 activity
8
protein-protein interaction
8
xenopus laevis
8
laevis oocytes
8
mutation key
8

Similar Publications

Evaluation of the Choroid Plexus Epithelium Inflammation TLR4/NF-κB/NKCC1 Signal Pathway Activation in the Development of Hydrocephalus.

CNS Neurosci Ther

October 2024

Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.

Background: Hydrocephalus is characterized by secretion, circulation, and absorption disorder of cerebrospinal fluid (CSF) with high morbidity and complication rate. The relationship between inflammation and abnormal secretion of CSF by choroid plexus epithelium (CPE) had received more attention. In this study, we aim to detect the role of Toll-like receptor 4/nuclear factor-kappa B/Na+/K+/2Cl-cotransporter 1(TLR4/NF-κB/NKCC1) signal pathway in the development of hydrocephalus.

View Article and Find Full Text PDF

VEGF, but Not BDNF, Prevents the Downregulation of KCC2 Induced by Axotomy in Extraocular Motoneurons.

Int J Mol Sci

September 2024

Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain.

Article Synopsis
  • KCC2 is a cotransporter in neurons that regulates chloride levels, crucial for the function of inhibitory neurotransmitters like GABA and glycine; low KCC2 levels can lead to increased neuronal excitability associated with disorders like epilepsy and neuropathic pain.
  • Axotomy (nerve injury) reduces KCC2 levels in motoneurons, but if the muscle reinnervation occurs, KCC2 levels can recover, suggesting the influence of neurotrophic factors.
  • Administration of VEGF can prevent the KCC2 downregulation after axotomy, while BDNF may decrease KCC2 levels, indicating potential therapeutic avenues for conditions linked to neuronal hyperactivity.
View Article and Find Full Text PDF

Spinal cord injury (SCI) results in acute damage and triggers secondary injury responses with sustained neuronal loss and dysfunction. However, the underlying mechanisms for these delayed neuronal pathologies are not entirely understood. SCI results in the swelling of spinal neurons, but the contribution of cell swelling to neuronal loss and functional deficits after SCI has not been systematically characterized.

View Article and Find Full Text PDF

Characterization and functional analysis of Litopenaeus vannamei Na/K/2Cl cotransporter 1 under nitrite stress.

Comp Biochem Physiol A Mol Integr Physiol

December 2024

Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai 201306, China; National Experimental Teaching Demonstration Centre for Aquatic Sciences, Shanghai Ocean University, Shanghai 201306, China. Electronic address:

The function of Litopenaeus vannamei Na/K/2Cl cotransporter 1 (NKCC1) under nitrite stress was investigated. The full-length cDNA sequence of the L. vannamei NKCC1 gene was cloned using the rapid amplification of cDNA ends (RACE) technique, and the sequence was analysed using bioinformatics tools.

View Article and Find Full Text PDF

The airway surface liquid (ASL) plays a crucial role in lung defense mechanisms, and its composition and volume are regulated by the airway epithelium. The cystic fibrosis transmembrane conductance regulator (CFTR) is abundantly expressed in a rare airway epithelial cell type called an ionocyte. Recently, we demonstrated that ionocytes can increase liquid absorption through apical CFTR and basolateral barttin/chloride channels, while airway secretory cells mediate liquid secretion through apical CFTR channels and basolateral NKCC1 transporters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!