The effect of the antidepressant desipramine on intracellular Ca(2+) movement and viability in prostate cancer cells has not been explored previously. The present study examined whether desipramine could alter Ca(2+) handling and viability in human prostate PC3 cancer cells. Cytosolic free Ca(2+) levels ([Ca(2+)](i)) in populations of cells were measured using fura-2 as a probe. Desipramine at concentrations above 10 microM increased [Ca(2+)](i) in a concentration-dependent manner. The responses saturated at 300 microM desipramine. The Ca(2+) signal was reduced by half by removing extracellular Ca(2+), but was unaffected by nifedipine, nicardipine, nimodipine, diltiazem or verapamil. In Ca(2+)-free medium, after treatment with 300 microM desipramine, 1 microM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor) failed to release Ca(2+) from endoplasmic reticulum. Conversely, desipramine failed to release more Ca(2+) after thapsigargin treatment. Inhibition of phospholipase C with U73122 did not affect desipramine-induced Ca(2+) release. Overnight incubation with 10-800 microM desipramine decreased viability in a concentration-dependent manner. Chelation of cytosolic Ca(2+) with BAPTA did not reverse the decreased cell viability. Collectively, the data suggest that in PC3 cells, desipramine induced a [Ca(2+)](i) increase by causing Ca(2+) release from endoplasmic reticulum in a phospholipase C-independent fashion and by inducing Ca(2+) influx. Desipramine decreased cell viability in a concentration-dependent, Ca(2+)-independent manner.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tiv.2006.10.011DOI Listing

Publication Analysis

Top Keywords

cancer cells
12
ca2+
12
microm desipramine
12
endoplasmic reticulum
12
desipramine
9
desipramine-induced ca2+
8
ca2+ movement
8
human prostate
8
prostate cancer
8
concentration-dependent manner
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!