Lead (Pb(2+)) is a pollutant commonly found in the environment. It causes a wide variety of detrimental effects on developing central nervous system. However, the mechanisms of its neurotoxicity remained to be elucidated. In hippocampus, the muscarinic cholinergic system modulates certain forms of synaptic transmission and plasticity, and plays an important role in learning and memory. In this study, the effects of Pb(2+) on muscarinic modulation of glutamatergic synaptic transmission in hippocampal CA1 area were investigated using the conventional whole-cell patch-clamp technique in rat hippocampal slices. In the presence of nicotinic antagonist mecamylamine, carbachol (CCh), a cholinergic agonist, concentration-dependently inhibited glutamatergic excitatory postsynaptic currents (EPSCs), enhanced paired-pulse facilitation (PPF) and the response to 10-Hz pulse-trains. The analysis of the spontaneous excitatory postsynaptic currents (sEPSCs) showed the activation of muscarinic receptors by CCh decreased the frequency, amplitude and decay time of sEPSCs. The 10 microM Pb(2+) depressed the inhibition of EPSCs by CCh, reduced the CCh-induced enhancement of PPF and the response to 10-Hz pulse-trains, and also affected the modulation of sEPSCs by CCh. The results suggested that the activation of muscarinic acetylcholine (ACh) receptors in hippocampus could modulate glutamatergic synaptic transmission, while Pb(2+) exposure would lead to an alteration of muscarinic modulation, which might be involved in the Pb(2+)-induced impairment of synaptic transmission and plasticity during learning and memory.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuro.2006.11.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!