Most cancers in solid tissues increase with age and invariably contain causal mutations eliminating expression of one or more autosomal tumor suppressor genes. However, very little is known about the effect of age on autosomal mutations, often large in size, in cells of solid tissues. In this study, the frequency and spectrum of autosomal mutations were examined as a function of age for kidney epithelial cells and ear mesenchymal cells in B6D2F1 mice heterozygous for the selectable Aprt locus. Aprt mutant frequencies were found to increase with age in the kidneys of both male and female mice, but at all ages the mutant frequencies were approximately twice as high in the females, which in this strain have shorter lifespans than the males. An age-related increase in Aprt mutant frequencies was also observed for ear cells from female mice, but no significant increases in mutant frequencies were observed for the ear cells of male mice. A molecular analysis showed that the kidney and ear mutational spectra were distinct and that the age-related increases in mutant frequencies did not involve significant shifts in the mutational spectra. In total, the results demonstrate both gender and cell-type-specific patterns of autosomal mutational accumulation as a function of age in two solid tissues of the mouse.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1474-9726.2006.00264.x | DOI Listing |
Sci Rep
January 2025
Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy.
Perfluorinated compounds (PFAS) are well recognized toxic pollutants for humans, but if their effect is equally harmful for healthy and fragile people is unknown. Addressing this question represents a need for ensuring global health and wellbeing to all individuals in a world facing the progressive increase of aging and aging related diseases. This study aimed to evaluate the impact of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorohexanoic acid (PFHxA) exposure on development and skeletal phenotype using the osteogenesis imperfecta (OI) zebrafish model Chihuahua (Chi/+), carrying a dominant glycine substitution in the α1 chain of collagen I and their wild-type (WT) littermates.
View Article and Find Full Text PDFCancer Discov
January 2025
Memorial Sloan Kettering Cancer Center, New York, NY, United States.
The role of ubiquitin-mediated degradation mechanisms in the pathogenesis of diffuse large B cell (DLBCL) and follicular lymphoma (FL) is not completely understood. We show that conditional deletion of the E3 ubiquitin ligase Fbxo45 in germinal center B-cells results in B-cell lymphomagenesis in homozygous (100%) and heterozygous (48%) mice. Mechanistically, FBXO45 targets the RHO guanine exchange factor ARHGEF2/GEF-H1 for ubiquitin-mediated degradation.
View Article and Find Full Text PDFClin Cancer Res
January 2025
Brigham and Women's Hospital, Boston, United States.
Purpose: Cardiac angiosarcoma (CAS) is a rare, aggressive malignancy with limited treatment options. Both sporadic and familial cases occur, with recent links to germline POT1 mutations. The genomic landscape of this disease is poorly understood.
View Article and Find Full Text PDFJ Mol Diagn
January 2025
Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States. Electronic address:
Single nucleotide variations (SNVs) and polymorphisms (SNPs) are characteristic biomarkers in various biological contexts, including pathogen drug resistances and human diseases. Tools that lower the implementation barrier of molecular SNV detection methods would provide greater leverage of the expanding SNP/SNV database. The oligonucleotide ligation assay (OLA) is a highly specific means for detection of known SNVs and is especially powerful when coupled with polymerase chain reaction (PCR).
View Article and Find Full Text PDFNature
January 2025
Cell and Developmental Biology Department, John Innes Centre Norwich Research Park, Norwich, UK.
Nutrient acquisition is crucial for sustaining life. Plants develop beneficial intracellular partnerships with arbuscular mycorrhiza (AM) and nitrogen-fixing bacteria to surmount the scarcity of soil nutrients and tap into atmospheric dinitrogen, respectively. Initiation of these root endosymbioses requires symbiont-induced oscillations in nuclear calcium (Ca) concentrations in root cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!