It has been established that transferrin binds a variety of metals. These include toxic uranyl ions which form rather stable uranyl-transferrin derivatives. We determined the extent to which the iron binding sites might accommodate the peculiar topographic profile of the uranyl ion and the consequences of its binding on protein conformation. Indeed, metal intake via endocytosis of the transferrin/transferrin receptor depends on the adequate coordination of the metal in its site, which controls protein conformation and receptor binding. Using UV-vis and Fourier transform infrared difference spectroscopy coupled to a microdialysis system, we showed that at both metal binding sites two tyrosines are uranyl ligands, while histidine does not participate with its coordination sphere. Analysis by circular dichroism and differential scanning calorimetry (DSC) showed major differences between structural changes associated with interactions of iron or uranyl with apotransferrin. Uranyl coordination reduces the level of protein stabilization compared to iron, but this may be simply related to partial lobe closure. The lack of interaction between uranyl-TF and its receptor was shown by flow cytometry using Alexa 488-labeled holotransferrin. We propose a structural model summarizing our conclusion that the uranyl-TF complex adopts an open conformation that is not appropriate for optimal binding to the transferrin receptor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi061945h | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!