Identification of cultured cells expressing ligand-gated cationic channels.

Protein Expr Purif

Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037.

Published: August 1992

We have identified cultured cells that express ligand-gated cation channels using a simple method which may also be applied to the screening of chemical agents for their use as agonists or antagonists. This assay is based upon the observation that many ligand-gated cation channels are permeable to lithium and agonists induce the flux of lithium into the cells which contain them. Since the accumulation of intracellular lithium can alter the cell cycle, the measurement of [3H]thymidine ([3H]thy) incorporation should reflect this occurrence. This expectation was realized using the PC12 cell line which expresses neuronal-like nicotinic acetylcholine receptor (nAChR). When cholinergic agonists are applied to PC12 cells in the presence of lithium-containing buffer and cells are subsequently pulsed with [3H]thy, the radiolabel incorporation into these cells relative to controls is reduced. If cholinergic antagonists are included or if the concentration of agonist either rapidly desensitizes receptors or is insufficient to induce channel opening, the reduction in [3H]thy incorporation is not observed. This method also provides a rapid way to screen cultured cell lines for those that express ligand-gated cation channels. This assay offers the potential to be automated for the low cost screening of drugs which act upon ligand-gated ion channels.

Download full-text PDF

Source
http://dx.doi.org/10.1016/1046-5928(91)90058-qDOI Listing

Publication Analysis

Top Keywords

ligand-gated cation
12
cation channels
12
cultured cells
8
express ligand-gated
8
[3h]thy incorporation
8
cells
6
ligand-gated
5
channels
5
identification cultured
4
cells expressing
4

Similar Publications

Structural insights into the activation mechanism of the human zinc-activated channel.

Nat Commun

January 2025

State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300350, China.

The zinc-activated channel (ZAC) is an atypical mammalian cys-loop receptor (CLR) that is activated by zinc ions and protons, allowing cations to pass through. The molecular mechanism that ligands use to activate ZAC remains elusive. Here, we present three cryo-electron microscopy reconstructions of human ZAC (hZAC) under different conditions.

View Article and Find Full Text PDF

Diarylamidines are a group of widely used small molecule drugs. One common use of diarylamidines is their pharmacological inhibition of ligand-gated cation channels, including tetrameric ionotropic glutamate receptors and trimeric degenerin/epithelial sodium channel/acid-sensing ion channels. Here, we discover a degenerin/epithelial sodium channel/acid-sensing ion channel from the brachiopod (lamp shell) Novocrania anomala, at which diarylamidines act as agonists.

View Article and Find Full Text PDF
Article Synopsis
  • - Insect olfactory receptors, particularly ORco, are complex cation channels that interact with various ligands, and their function can be inhibited by specific small molecules derived from natural sources, leading to reduced olfactory capability in mosquitoes.
  • - Researchers developed a pharmacophore model based on structural features of identified antagonists that bind to the ORco agonist site, successfully using this model to screen for potential antagonists from a library of natural volatile compounds.
  • - The study compared in silico predictions and experimental results, confirming that the pharmacophore accurately identified a majority of orthosteric antagonists, and also created a support vector machine model to distinguish effective compounds from those that did not inhibit ORco function.
View Article and Find Full Text PDF

Background: Persistent innate and adaptive immune responses in the brain contribute to the progression of Alzheimer's disease (AD). APOE4, the most important genetic risk factor for sporadic AD, encodes apolipoprotein E4, which by itself is a potent modulator of immune response. However, little is known about the immune hub that governs the crosstalk between the nervous and the adaptive immune systems.

View Article and Find Full Text PDF

Ionotropic glutamate receptors (iGluRs) are tetrameric ligand-gated ion channels that mediate the majority of excitatory neurotransmission. iGluRs are gated by glutamate, where upon glutamate binding, they open their ion channels to enable cation influx into post-synaptic neurons, initiating signal transduction. The structural mechanism of iGluR gating by glutamate has been extensively studied in the context of positive allosteric modulators (PAMs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!