We have identified cultured cells that express ligand-gated cation channels using a simple method which may also be applied to the screening of chemical agents for their use as agonists or antagonists. This assay is based upon the observation that many ligand-gated cation channels are permeable to lithium and agonists induce the flux of lithium into the cells which contain them. Since the accumulation of intracellular lithium can alter the cell cycle, the measurement of [3H]thymidine ([3H]thy) incorporation should reflect this occurrence. This expectation was realized using the PC12 cell line which expresses neuronal-like nicotinic acetylcholine receptor (nAChR). When cholinergic agonists are applied to PC12 cells in the presence of lithium-containing buffer and cells are subsequently pulsed with [3H]thy, the radiolabel incorporation into these cells relative to controls is reduced. If cholinergic antagonists are included or if the concentration of agonist either rapidly desensitizes receptors or is insufficient to induce channel opening, the reduction in [3H]thy incorporation is not observed. This method also provides a rapid way to screen cultured cell lines for those that express ligand-gated cation channels. This assay offers the potential to be automated for the low cost screening of drugs which act upon ligand-gated ion channels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/1046-5928(91)90058-q | DOI Listing |
Nat Commun
January 2025
State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300350, China.
The zinc-activated channel (ZAC) is an atypical mammalian cys-loop receptor (CLR) that is activated by zinc ions and protons, allowing cations to pass through. The molecular mechanism that ligands use to activate ZAC remains elusive. Here, we present three cryo-electron microscopy reconstructions of human ZAC (hZAC) under different conditions.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Michael Sars Centre, University of Bergen, Bergen, Norway. Electronic address:
Diarylamidines are a group of widely used small molecule drugs. One common use of diarylamidines is their pharmacological inhibition of ligand-gated cation channels, including tetrameric ionotropic glutamate receptors and trimeric degenerin/epithelial sodium channel/acid-sensing ion channels. Here, we discover a degenerin/epithelial sodium channel/acid-sensing ion channel from the brachiopod (lamp shell) Novocrania anomala, at which diarylamidines act as agonists.
View Article and Find Full Text PDFJ Biol Chem
December 2024
National Centre for Scientific Research "Demokritos", Institute of Biosciences and Applications, Athens, Greece. Electronic address:
Transl Neurodegener
October 2024
Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
Background: Persistent innate and adaptive immune responses in the brain contribute to the progression of Alzheimer's disease (AD). APOE4, the most important genetic risk factor for sporadic AD, encodes apolipoprotein E4, which by itself is a potent modulator of immune response. However, little is known about the immune hub that governs the crosstalk between the nervous and the adaptive immune systems.
View Article and Find Full Text PDFbioRxiv
September 2024
Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
Ionotropic glutamate receptors (iGluRs) are tetrameric ligand-gated ion channels that mediate the majority of excitatory neurotransmission. iGluRs are gated by glutamate, where upon glutamate binding, they open their ion channels to enable cation influx into post-synaptic neurons, initiating signal transduction. The structural mechanism of iGluR gating by glutamate has been extensively studied in the context of positive allosteric modulators (PAMs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!