The Serratia entomophila antifeeding prophage (Afp) is thought to form a virus-like structure that has activity towards the New Zealand grass grub, Costelytra zealandica. Through the trans based expression of AnfA1, an RfaH - like transcriptional antiterminator, the Afp, was able to be induced. The expressed Afp was purified and visualized by electron microscopy. The Afp resembled a phage tail-like bacteriocin, exhibiting two distinct morphologies: an extended and a contracted form. The purified Afp conferred rapid activity towards C. zealandica larvae, causing cessation of feeding and a change to an amber colouration within 48 h postinoculation, with increased dose rates causing larval mortality.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1574-6968.2007.00645.xDOI Listing

Publication Analysis

Top Keywords

serratia entomophila
8
entomophila antifeeding
8
antifeeding prophage
8
afp
5
isolation characterization
4
characterization serratia
4
prophage serratia
4
prophage afp
4
afp thought
4
thought form
4

Similar Publications

Study on the biodegradation characteristics and mechanism of tetracycline by Serratia entomophila TC-1.

Sci Total Environ

October 2024

Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China. Electronic address:

Microbial degradation is an important solution for antibiotic pollution in livestock and poultry farming wastes. This study reports the isolation and identification of the novel bacterial strain Serratia entomophila TC-1, which can degrade 87.8 % of 200 mg/L tetracycline (TC) at 35 °C, pH 6.

View Article and Find Full Text PDF

Contractile injection systems (CISs) are phage tail-related structures that are encoded in many bacterial genomes. These devices encompass the cell-based type VI secretion systems (T6SSs) as well as extracellular CISs (eCISs). The eCISs comprise the R-tailocins produced by various bacterial species as well as related phage tail-like structures such as the antifeeding prophages (Afps) of , the virulence cassettes (PVCs), and the metamorphosis-associated contractile structures (MACs) of .

View Article and Find Full Text PDF

Background: Isolates of Serratia entomophila and S. proteamaculans (Yersiniaceae) cause disease specific to the endemic New Zealand pasture pest, Costelytra giveni (Coleoptera: Scarabaeidae). Previous genomic profiling has shown that S.

View Article and Find Full Text PDF

The grass grub endemic to New Zealand, Costelytra giveni (Coleoptera: Scarabaeidae), and the manuka beetle, Pyronota festiva and P. setosa (Coleoptera: Scarabaeidae), are prevalent pest species. Through assessment of bacterial strains isolated from diseased cadavers of these insect species, 19 insect-active Serratia proteamaculans variants and a single Serratia entomophila strain were isolated.

View Article and Find Full Text PDF

The antifeeding prophage (Afp) produced by the bacterium Serratia entomophila is the archetypical external contractile injection system (eCIS). Afp and its orthologues are characterized by three sheath proteins, while contractile bacteriophages and pyocins encode only one. Using targeted mutagenesis, transmission electron microscopy (TEM), and pulldown studies, we interrogated the roles of the three sheath proteins (Afp2, Afp3, and Afp4) in Afp assembly, in particular the interaction between the two sequence-related helical-sheath-forming proteins Afp2 and Afp3 and their cross talk with the tail termination sheath capping protein (TrP) Afp16 in the sheath maturation process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!