Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The sterically guided molecular recognition of nucleobases, phosphates, adenosine, and uridine nucleotides on Langmuir monolayers and Langmuir-Blodgett monolayers of amphiphilic mono- or bis(Zn2+-cyclen)s assembled on thiolated surfaces was investigated. The stepwise selective binding of metal ions, uracil, or phosphate by dicetyl cyclen monolayers with variously tuned structures at the air/water interface was corroborated by the measurements of the corresponding LB films deposited onto quartz crystals. Two types of recognition surfaces were fabricated from Zn2+-dicetyl cyclen. The surface covered with a complex preformed in the Langmuir monolayer was capable both of imide and of phosphate binding. The similar complex formed directly in an LB film on thiolated gold was inactive with respect to imide. The surface plasmon resonance measurements evidenced the stepwise assembly of complementary nucleotides on SAM/LB templates through consecutive phosphate-Zn2+-cyclen coordination. Base pairing between nucleotides resulted in a formation of A-U bilayers comprising two complementary monolayers. Finally, we report on SAM/LB patterns designed for divalent molecular recognition of uridine phosphate by amphiphilic bis(Zn2+-cyclen).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la0624079 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!