The effects of photolysis on frozen, thin films of water-ice containing nitrogen dioxide (as its dimer dinitrogen tetroxide) have been investigated using a combination of Fourier transform reflection-absorption infrared (FT-RAIR) spectroscopy and mass spectrometry. The release of HONO is ascribed to a mechanism in which nitrosonium nitrate (NO+NO3-) is formed. Subsequent solvation of the cation leads to the nitroacidium ion, H2ONO+, i.e., protonated nitrous acid. The pathway proposed explains why the field measurement of HONO at different polar sites is often contradictory.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp068264g | DOI Listing |
J Phys Chem A
February 2007
The effects of photolysis on frozen, thin films of water-ice containing nitrogen dioxide (as its dimer dinitrogen tetroxide) have been investigated using a combination of Fourier transform reflection-absorption infrared (FT-RAIR) spectroscopy and mass spectrometry. The release of HONO is ascribed to a mechanism in which nitrosonium nitrate (NO+NO3-) is formed. Subsequent solvation of the cation leads to the nitroacidium ion, H2ONO+, i.
View Article and Find Full Text PDFJ Phys Chem A
February 2005
Department of Chemistry, University College Cork, Ireland.
Nitrous acid (HONO) and the nitrite ion represent a particularly important conjugate pair of trace species with regard to heterogeneous behavior within the bulk, and on the surface, of aqueous atmospheric dispersions: this role results from their chemical reactivity, photolysis pathways, solubility, and ambient concentration levels. The actual ratio of NO(2)(-): HONO in solution is determined by the pH and the nitrous acid dissociation constant (pK(a)) which is generally quoted in the literature as 3.27 at 298 K.
View Article and Find Full Text PDFJ Phys Chem A
April 2006
Department of Chemistry, University College Cork, Ireland.
The effect of freezing on a variety of acidified and neutral, nitrite ion and halide-containing mixtures has been investigated using UV/vis spectroscopy. Several trihalide ions were formed and monitored, including I(2)Cl(-), I(2)Br(-), ICl(2)(-) and IBr(2)(-). A mechanism to explain the observations is given in terms of steps involving INO and the nitroacidium ion, [H(2)ONO](+).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!