Exploiting charge-transfer complexation for selective measurement of gas-phase olefins with nanoparticle-coated chemiresistors.

Anal Chem

Center for Wireless Integrated MicroSystems, Department of Chemistry, and Department of Environmental Health Sciences, University of Michigan, 109 South Observatory Street, Ann Arbor, Michigan 48109, USA.

Published: February 2007

Charge-transfer-mediated olefin-selective sensing by use of chemiresistors (CR) coated with composite films of n-octanethiolate-monolayer-protected gold nanoparticles (C8-MPN) and each of several square-planar PtCl2(olefin)(pyridine) coordination complexes is described. Where the gas-phase olefin analyte differs from that initially coordinated to Pt, olefin substitution occurs and is accompanied by a persistent shift in the composite film resistance. Commensurate changes in film mass are also observed with a similarly coated thickness shear mode resonator. Regeneration is possible by exposure to the initially complexed olefin gas or vapor. If the olefin analyte is the same as that initially coordinated to Pt, then a reversible charge-transfer interaction occurs that is accompanied by a decrease in film resistance (increase in film mass), which recovers spontaneously after removal of the olefin from the atmosphere above the sensor. This behavior differs from that of MPN-coated CRs lacking such Pt complexes, which invariably yield resistance increases upon exposure to nonpolar vapors. Red shifts in the UV-vis absorbance spectra of the PtCl2(olefin)(pyridine) complexes in solution upon addition of free olefin support the hypothesis that Pt-olefin coordination in the composite films creates temporary low-resistance pathways that compete effectively with the concurrent increase in tunneling resistance associated with swelling-induced separation of C8-MPN cores. Structurally analogous non-olefins produce only increases in film resistance. Selective measurement of styrene, ethylene, 1-octene, and 1,3-butadiene is illustrated. Olefin detection limits are reduced as much as 23 000-fold by inclusion of the corresponding Pt complex in the CR interface film. Composite films suffer a gradual loss of selectivity from decomposition of the Pt-olefin complex, apparently facilitated by a Au-Pt charge transfer.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac061305kDOI Listing

Publication Analysis

Top Keywords

composite films
12
film resistance
12
selective measurement
8
olefin analyte
8
initially coordinated
8
occurs accompanied
8
film mass
8
olefin
7
film
6
resistance
5

Similar Publications

As an emerging catalytic strategy, heterogeneous Piezo-Self-Fenton (EPSF) has demonstrated significant potential in fields such as environmental remediation and biomedicine in recent years. However, the catalytic reactions in this process are complex and diverse, and the understanding of high-entropy catalytic systems remains limited. In this study, we constructed a series of iron-based EPSF materials by incorporating various types of iron sources into MgO@rGO/PVDF-HFP composite piezoelectric films.

View Article and Find Full Text PDF

This study investigates the structural and catalytic properties of pure and Sr-doped LaCoO and LaFeO thin films for potential use as resistive gas sensors. Thin films were deposited via pulsed laser deposition (PLD) and characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), nanoindentation, and scratch tests. XRD analysis confirmed the formation of the desired perovskite phases without secondary phases.

View Article and Find Full Text PDF

The possibility of inducing structural crosslinking and densification of plasma-deposited SiO networks by controlling low-energy reaction mechanisms was investigated. For this, films were deposited for 300 s from HMDSO (2%), O (86%) and Ar (12%) mixtures at a working pressure of 15.7 Pa.

View Article and Find Full Text PDF

Herein, we report a comprehensive investigation on the thermal transitions of thin films of poly [2,5-bis(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione -3,6-diyl)-alt-(2,2';5',2″;5″,2'″-quaterthiophen-5,5'″-diyl)]PDPP4T, poly[2,6-(4,4-bis-(2-ethy-lhexyl)-4H-cyclopenta [2,1-b;3,4-b']dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] PCPDTBT, 1:1 blend of PDPP4T and PCPDTBT, and their composites with gold nanoparticles (AuNPs). The thermal transitions of these materials were studied using variable temperature spectroscopic ellipsometry (VTSE), with differential scanning calorimetry (DSC) serving as the reference method. Based on obtained VTSE results, for the first time, we have determined the phase diagrams of PDPP4T/PCPDTBT and their AuNPs composites.

View Article and Find Full Text PDF

The present research is a comprehensive study that developed poly(lactic acid) PLA/natural wax (Wx)/non-functionalized titanium dioxide nanoparticles (TiO-NF) and PLA/Wx/titanium dioxide nanoparticles functionalized with triethoxysilane (TiO-F) composites by melt blending. This research systematically investigated their hydrolytic degradation, antibacterial properties, oxygen permeability, and optical transparency. The TiO-NF or TiO-F (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!