Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Biological arrays are hindered by the lack of uniformity in the deposition of biomaterials. Efforts aimed at improving this deposition have focused on altering the composition of the solution or the tool used to deposit the material. However, little attention has been paid to controlling material deposition by constraining the physical and chemical topography of the surface. Here we present the use of a hybrid hydrophilic/hydrophobic micropatterned surface to direct the deposition of spotted DNA on microarrays. These polymer "liftoff" arrays combine the hydrophobic surface properties of di-p-xylylene (Parylene) with photolithographically etched hydrophilic openings within the polymer. We show that the flow pattern of solutes on these substrates favors the concentration of dissolved material into the mesoscopic openings underlying the printed spot, resulting in significantly improved uniformity of deposition. Moreover, the micropatterned surface allows for increased replication of spotted materials. Finally, these polymer liftoff arrays display reduced array-to-array variation, improving the reproducibility of data acquisition. We envision that these novel substrates can be generalized to produce more uniform arrays of other patterned biomaterials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2793531 | PMC |
http://dx.doi.org/10.1021/ac061898z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!