New valve and bonding designs for microfluidic biochips containing proteins.

Anal Chem

Department of Chemical and Biomolecular Engineering, Nanoscale Science and Engineering Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, Ohio 43210, USA.

Published: February 2007

Two major concerns in the design and fabrication of microfluidic biochips are protein binding on the channel surface and protein denaturing during device assembly. In this paper, we describe new methods to solve these problems. A "fishbone" microvalve design based on the concept of superhydrophobicity was developed to replace the capillary valve in applications where the chip surface requires protein blocking to prevent nonspecific binding. Our experimental results show that the valve functions well in a CD-like ELISA device. The packaging of biochips containing pre-loaded proteins is also a challenging task since conventional sealing methods often require the use of high temperatures, electric voltages, or organic solvents that are detrimental to the protein activity. Using CO2 gas to enhance the diffusion of polymer molecules near the device surface can result in good bonding at low temperatures and low pressure. This bonding method has little influence on the activity of the pre-loaded proteins after bonding.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac0615798DOI Listing

Publication Analysis

Top Keywords

microfluidic biochips
8
pre-loaded proteins
8
valve bonding
4
bonding designs
4
designs microfluidic
4
biochips proteins
4
proteins major
4
major concerns
4
concerns design
4
design fabrication
4

Similar Publications

The application of physical fields is crucial for droplet generation and manipulation, underpinning technologies like printing, microfluidic biochips, drug delivery, and flexible sensors. Despite advancements, precise micro/nanoscale droplet generation and accurate microfluidic reactions remain challenging. Inspired by the liquid ejection mechanisms in microscopic organisms, an electrostatic manipulator for the precise capture, emission, and transport of microdroplets is proposed.

View Article and Find Full Text PDF

The simultaneous detection of proteins and microRNA (miRNA) at the single extracellular vesicle (EV) level shows great promise for precise disease profiling, owing to the heterogeneity and scarcity of tumor-derived EVs. However, a highly reliable method for multiple-target analysis of single EVs remains to be developed. In this study, a igital ual CRISPR-Cas-powered ingle V valuation () system was proposed to enable the concurrent detection of surface protein and inner miRNA of EVs at the single-molecule level.

View Article and Find Full Text PDF

A novel hybridization chain reaction (HCR) powered optical fiber-embedded microfluidic biochip (HCR-FMB) has been constructed for ultrafast and sensitive detection of lethal-7a (let-7a) in serum. By integrating HCR, fluorescence energy resonant transfer, and evanescent wave fluorescence principle, the HCR-FMB enables detecting let-7a with satisfactory limit of detection of 100.0 pM within 6 min at room temperature, and demonstrates excellent specificity.

View Article and Find Full Text PDF

Simultaneous detection of multiple nucleic acid targets from a single sample is a common requirement in molecular diagnosis and basic research. Dividing a bulky polymerase chain reaction (PCR) into many isolated small reaction units through microfluidic technology is commonly used to realize this goal. However, previous microfluidic platforms for multiplex PCR suffer from complex structures and strict operation requirements.

View Article and Find Full Text PDF
Article Synopsis
  • Fungal infections are commonly caused by specific species, making accurate identification crucial in clinical settings due to their varied characteristics.
  • Current technologies face challenges like long processing times and high costs for identifying these species, which hampers onsite diagnosis.
  • A new semi-nested recombinase polymerase amplification (RPA) genoarray system has been developed for quick, sensitive, and cost-effective identification of four specific species, significantly improving detection capabilities over traditional methods.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!