Zn2 + is a novel ionic mediator of neurotoxic injury in central nervous system. Zn2 + homeostasis in hippocampal Zinc-rich mossy fiber (MF) pathway is important in keeping the balance between excitatory and inhibitory system, and in maintaining cognitive functions of the brain. Abnormal Zn2+ metastasis occurred during MS sprouting induced by developmental seizures and influenced the function of hippocampus. The Zn2+ transporters, Ca2 + permeable AMPA/kainate channels, metal binding proteins and mitochondrion may involved in this process. In addition to pathological effects of rapid intraneuronal Zn2+ accumulation, it is probable that following lower exposures, activation of signaling pathways by intracellular Zn2+ has important yet largely obscure effects on physiological synaptic functioning or synaptic plasticity. This unique ionic trans-synaptic messenger probably plays important roles in normal physiological functioning as well as in disease. Further elucidation of the process of Zn2+ metastasis in hippocampus should yield breakthroughs both in understanding the mechanism of developing seizure-induced brain injury and contributing the effects for making proper early intervention.
Download full-text PDF |
Source |
---|
Small
January 2025
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
Emerging evidence demonstrates that inducing ferroptosis, a nonapoptotic programmed cell death mode, holds significant potential for tumor treatment. However, current ferroptosis strategies utilizing exogenous Fenton-type heavy metal species or introducing glutathione (GSH)/glutathione peroxidase 4 (GPX4) suppressants are hampered by latent adverse effects toward organisms, while utilizing endogenous iron may cause undesirable tumor angiogenesis through specific signaling pathways. Here, a ferric ion (Fe)-responsive and DNAzyme-delivered coordination nanosystem (ZDD) is developed to achieve a novel scheme of synergistic tumor-specific ferroptosis and gene therapy, which modulates and harnesses the endogenous iron in tumors for inducing ferroptosis while intercepting tumor angiogenesis to enhance therapeutic efficacy.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong 226019, P. R. China.
Sci Bull (Beijing)
November 2024
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China. Electronic address:
Excess intracellular HS induces destructive mitochondrial toxicity, while overload of Zn results in cell pyroptosis and potentiates the tumor immunogenicity for immunotherapy. However, the precise delivery of both therapeutics remains a great challenge. Herein, an electrically activable ZnS nanochip for the controlled release of HS and Zn was developed for enhanced gas-ionic-immunotherapy (GIIT).
View Article and Find Full Text PDFAdv Healthc Mater
November 2024
Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China.
The clearance of minimal residual disease (MRD) after breast cancer surgery is crucial for inhibiting metastasis and recurrence. However, the most promising biomarker-activated fluorescence imaging strategies encounter accessibility issues of the delivered sensors to cytoplasmic targets. Herein, a flower-like composite nanosensor with photoacoustic (PA) effect-enhanced lysosomal escape and cytoplasmic marker-activated fluorescence is developed to address this challenge.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2024
Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!