Laser-induced temperature jump experiments were used for testing the rates of thermoinduced conformational transitions of reaction center (RC) complexes in chromatophores of Chromatium minutissimum. The thermoinduced transition of the macromolecular RC complex to a state providing effective electron transport from the multiheme cytochrome c to the photoactive bacteriochlorophyll dimer within the temperature range 220-280 K accounts for tens of seconds with activation energy 0.166 eV/molecule. The rate of the thermoinduced transition in the cytochrome-RC complex was found to be three orders of magnitude slower than the rate of similar thermoinduced transition of the electron transfer reaction from the primary to secondary quinone acceptors studied in the preceding work (Chamorovsky et al. in Eur Biophys J 32:537-543, 2003). Parameters of thermoinduced activation of the electron transfer from the multiheme cytochrome c to the photoactive bacteriochlorophyll dimer are discussed in terms of cytochrome c docking onto the RC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00249-007-0129-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!