Macrophage migration inhibitory factor acts via its intrinsic thiol-protein oxidoreductase activity to negatively regulate the neuronal chronotropic actions of angiotensin II in normotensive rat neurons. Because the chronotropic action of angiotensin II is potentiated in spontaneously hypertensive rat neurons, we investigated whether this negative regulatory mechanism is absent in these rats. Angiotensin II (100 nM) elicited an approximately 89% increase in neuronal firing in Wistar-Kyoto rat hypothalamus and brain stem cultured neurons and an increase in intracellular macrophage migration inhibitory factor levels in the same cells. The chronotropic action of angiotensin II was significantly greater (approximately 212% increase) in spontaneously hypertensive rat neurons, but angiotensin II failed to alter macrophage migration inhibitory factor expression in these cells. Intracellular application of recombinant macrophage migration inhibitory factor (0.8 nM) or its specific neuronal overexpression via Ad5-SYN-MIF (1x10(7) infectious units) significantly attenuated the chronotropic action of angiotensin II in spontaneously hypertensive rat neurons, similar to results from Wistar-Kyoto rat neurons. In contrast, C60S-macrophage migration inhibitory factor (0.8 nM), which lacks thiol-protein oxidoreductase activity, failed to alter the chronotropic action of angiotensin II in neurons from either rat strain. Thus, whereas macrophage migration inhibitory factor has the potential to depress the chronotropic action of angiotensin II in spontaneously hypertensive rat neurons, it is unlikely that this regulatory mechanism occurs, because angiotensin II does not increase the expression of this protein. The lack of this regulatory mechanism may contribute to the increased chronotropic action of angiotensin II in spontaneously hypertensive rat neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.HYP.0000257877.11495.cbDOI Listing

Publication Analysis

Top Keywords

migration inhibitory
28
inhibitory factor
28
chronotropic action
28
action angiotensin
28
rat neurons
28
macrophage migration
24
spontaneously hypertensive
20
hypertensive rat
20
regulatory mechanism
12
angiotensin spontaneously
12

Similar Publications

ERBB4 selectively amplifies TGF-β pro-metastatic responses.

Cell Rep

January 2025

MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China; The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310009, China. Electronic address:

Transforming growth factor β (TGF-β) is well known to play paradoxical roles in tumorigenesis as it has both growth-inhibitory and pro-metastatic effects. However, the underlying mechanisms of how TGF-β drives the opposing responses remain largely unknown. Here, we report that ERBB4, a member of the ERBB receptor tyrosine kinase family, specifically promotes TGF-β's metastatic response but not its anti-growth response.

View Article and Find Full Text PDF

In this study, we explored the impact of different biomechanical loadings on lumbar spine motion segments, particularly concerning intervertebral disc degeneration (IVDD). We aimed to uncover the cellular milieu and mechanisms driving ossification in the nucleus pulposus (NP) during IVDD, a process whose underlying mechanisms have remained elusive. The study involved the examination of fresh NP tissue from the L3-S1 segment of five individuals, either with IVDD or healthy.

View Article and Find Full Text PDF

Background: Retinopathy of prematurity (ROP) is a major cause of childhood blindness worldwide, highlighted by retinal neovascularization. Ubiquitin is present throughout the retina. The deubiquitinating enzyme ubiquitin-specific protease 39 (USP39) has been reported to be involved in angiogenesis.

View Article and Find Full Text PDF

Chondroitin sulfate (CS), a class of glycosaminoglycans covalently attached to proteins to form proteoglycans, is widely distributed in the extracellular matrix and cell surface of animal tissues. In our previous study, CS was used as a template for the synthesis of seleno-chondroitin sulfate (SeCS) through the redox reaction of ascorbic acid (Vc) and sodium selenite (NaSeO) and we found that SeCS could inhibit tumor cell proliferation and invasion. However, its effect on angiogenesis and its underlying mechanism are unknown.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by inflammation leading to joint damage and systemic complications. Angiogenesis promotes inflammation and contributes to RA progression. This study evaluated potential anti-angiogenic effects of several compounds including small-molecule kinase inhibitors, such as sunitinib (pan-kinase inhibitor), tofacitinib (JAK-inhibitor), NIKi (NF-κB-inducing kinase inhibitor), and the integrin-targeting peptide fluciclatide, using a scratch assay and 3D spheroid-based models of angiogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!