The localized surface plasmon resonance (LSPR)-based optical biosensor using nano-structures of noble metals has been considered as a useful tool for label-free detection of DNA hybridization and protein-protein interactions. We fabricated LSPR-based optical biosensors using gold nano-islands (nominal thickness; 75 A) on glass substrates that were easily made using the conventional fabrication methods. The formation of gold nano-islands on glass substrates was realized by heat treatment of thin gold film deposited with a low deposition rate (approximately 0.05 A/s). The morphologies of sensor surfaces composed of gold nano-islands were observed using an atomic force microscope (AFM) with a non-contact mode. To investigate the sensing capacity of the gold nano-island sensor for the binding of proteins by affinity interactions, the streptavidin and biotin interaction was used as a model system. In addition, detection of recombinant glutathione-S-transferase (GST)-tagged human interleukin-6 (hIL6) expressed in Escherichia coli was carried out by LSPR. It is expected that the LSPR sensors composed of gold nano-islands can be an alternative to traditional methods such as SDS-polyacrylamide gel electrophoresis (SDS-PAGE) for fast analysis of protein expression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2006.12.028DOI Listing

Publication Analysis

Top Keywords

gold nano-islands
16
protein expression
8
localized surface
8
surface plasmon
8
plasmon resonance
8
lspr-based optical
8
glass substrates
8
composed gold
8
gold
6
analysis recombinant
4

Similar Publications

Corrigendum to "Photothermal-promoted O/∙OH generation of gold nanotetrapod @ platinum nano-islands for enhanced catalytic/photodynamic therapy" [J. Colloid Interface Sci. 658 (2024) 301-312].

J Colloid Interface Sci

February 2025

State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green development, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, PR China. Electronic address:

View Article and Find Full Text PDF

Flat panel reactors, coated with photocatalytic materials, offer a sustainable approach for the commercial production of hydrogen (H) with zero carbon footprint. Despite this, achieving high solar-to-hydrogen (STH) conversion efficiency with these reactors is still a significant challenge due to the low utilization efficiency of solar light and rapid charge recombination. Herein, hybrid gold nano-islands (HGNIs) are developed on transparent glass support to improve the STH efficiency.

View Article and Find Full Text PDF

Lung cancer is one of the deadliest cancers worldwide due to the inability of existing methods for early diagnosis. Tumor-derived exosomes are nano-scale vesicles released from tumor cells to the extracellular environment, and their investigation can be very useful in both biomarkers for early cancer screening and treatment assessment. This research detected the exosomes via an ultrasensitive electrochemical biosensor containing gold nano-islands (Au-NIs) structures.

View Article and Find Full Text PDF

Photothermal-promoted O/OH generation of gold nanotetrapod @ platinum nano-islands for enhanced catalytic/photodynamic therapy.

J Colloid Interface Sci

March 2024

State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China. Electronic address:

Ultrasmall platinum (Pt) nanozymes are used for catalytic therapy and oxygen (O)-dependent photodynamic therapy (PDT) by harnessing the dual-enzyme activities of catalase (CAT) and peroxidase (POD). However, their applications as nanocatalysts are limited due to their low catalytic activity. Herein, we constructed a photothermal-promoted bimetallic nanoplatform (AuNTP@Pt-IR808) by depositing ultrasmall Pt nano-islands and modifying 1-(5-Carboxypentyl)-2-(2-(3-(2-(1-(5-carboxypentyl)-3,3-dimethylindolin-2-ylidene)ethylidene)-2-chlorocyclohex-1-en-1-yl)vinyl)-3,3-dimethyl-3H-indol-1-ium bromide (IR808) on gold nanotetrapod (AuNTP) with CAT/POD activities to enhance PDT/catalytic therapy.

View Article and Find Full Text PDF

Metal nanoparticles (MNPs) are synthesized using various techniques on diverse substrates that significantly impact their properties. However, among the substrate materials investigated, the major challenge is the stability of MNPs due to their poor adhesion to the substrate. Herein, it is demonstrated how a newly developed H-glass can concurrently stabilize plasmonic gold nanoislands (GNIs) and offer multifunctional applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!